EO107

R FIRAR

Introduction To Computer Science
Semester 102-1

F 1] BH
Jonathon David White
T AR
R70740, R70723
WhiteJD@XiaoTu.com

i N 102 5 11 5] S |1 14 1453 397}
Modified AD13 & 11 £| 5 [ (Rev 8686)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf) Semester 102-1 pg.i


mailto:WhiteJD@XiaoTu.com

“To Him Who Is Above And Beyond All”
Table of Contents

L. INETOAUCTION. ...ttt et e et e e ettt e et e e eeabeeesbeeeasaeeassaeesnsaeesssaeeeasnssssaaeeeassseeaaeannes 2
Lol FACTIIEALOTS. ¢ tecevieiieeieee ettt ettt ettt et e sttt e teeetbe e beeeabeeseesabeesaeesseesssaasseensaeeaseansaessseassseasseessseanseesseenseensseanes 2
1.2 RESPECE ettt ettt ettt ettt ettt et e s ht e et esat e e bt e s ab e et esh bt e bt e ea bt e bt e e at e ea bt e e a bt e bt e ea ke e bt e eabe e bt e enbe e heeebeenabeeeeeante 2
1.3 COUTSE OVEIVIEW......eutitinienienieiteiteitet ettt et ettt ettt ettt et et e st e st e bt e bt eb e bt s bt s bt e b b sb et et et et e st estemtebeebeebeebeebesbenuenteens 3
1.4 TeXtDOOKS/RETETEICES. ... .eueititiriirtiteste ettt ettt ettt sttt ettt et bt eb e e bt e bt eb e e bt s bt et e benae bt e nbeenbeenneenae 3
1.5 KEY WEDSIEES. ....euvieiieiieeieiteeteetteit et et e it et et esteeseesaeestesaeessesseesseeseessaeseesseessesseessesseassaseessesseessessaensesssensensaensenseensnes 3
1.6 Course Delivery and MILEStONES..........ccuiiieriirieriiiierieetesteetesteetesteesteeteessesseessesseessesssesesssessesssasseessasseessseenssesensens 4
1.7 GIAQINEG. ... i cvtievieiicieete ettt ettt ettt e et et e et e teesseeteesbeeaeesseeseesseessesbeessesseessesseess e seesseessensesseesseeseeensseesseeenraeensrens 5
1.8 CalRIIAAL ...ttt ettt h ettt e s et e a e bt e a et bt e et e h e bt eh e e bt e bt e bt ea b e bt e et e bt e bt e e eebeeenbees 6
1.9 Detailed Lecture Plan / Teaching Schedule with References...........ccoeiieiiiiiniiiiiieeeee e 7
2. Theory Of COMPULINE. ...ccuiiiiiiieeiiee et e ettt e et e e st e e et eeesteeessbeeessaeeesseeessaeessseessssaseeeesnsssseeeeennsssees 13
2.1 Finite State AUtOmMAta (FSA) .. ..ottt ettt et e et e et e s v e ebeesebe e bt esebeessaessseesseessseesseesssaaeanssaeannn 13
2.2 TULING IMACKINES. .....eeeeeieiieieeieete ettt ettt e et e et et e bt e e e s st eaee s st enteeseenseeseenseeseenseeneenseeneesseensesneeeanseeenneeennseenns 14
3. Algorithms and UML AcCtiVity d1a@TamS........cceeeuieruieeiieniieeieesiie et eiee et esiee st e e eeteeesneeeeenaeeens 15
3.1 ALOTIERIMS. ...ttt ettt ettt ettt et e et e s et et e s st essesseenseeseenseessenseeneanseeseenseensesseenseeneensesseenseeseenseensensaeanns 15
3.2 UML DIAGLAMIS. ......ecuvetieeieiieiietteteettetestestesstessesstessesssesseessesseessesseesseassessesseessesssesseessessesssessesssessseesssessnsseessseennns 15
4. Networks and Operating SYSTEIMS. ......eeuieruieriiieriieiieeitee et eieeeteeteeseeebeeseeeebeessaeesseessaesnseenaeeeennns 18
5. Number Systems and Data Handling...........c.ccccveeeiiiiiiiiiniiiiieieciecee et 19
5.1 RepreSenting NUIMDETS .......cc.eccveriieieriieieitietesteetesteestesteessesseessesssessaessesseessasseassasseessesssessesssessesssessesssessesssesssseens 19
5.2 Converting between Bases in a Positional Number SYSteM............ccvevviiieriiiieniiiieniieienreeeeere et eve e sveesaesveenee e 21
5.3 StOra@e OF INUIMIDETS .....eeouiiuiiiiieieitiett ettt ettt ettt ettt e bt s a e e bt s et e s bt sete s bt e st e s bt es e ebeenbeebeenbeeesaneesmteeenneeennne 23
6. COMPULET OTZANIZATION. ...ccuviieeeieeeitreeeiteeesiteesteeesteeesseeassseeassseeassseessseesssseeassseessssssssseesesssssseeesns 24
7. Introduction to ANSI-C Programming.............ccueeeeieeeiiresiiieeeiieesieeesieeesereeessseeeesesssseeeessssssseseens 25
T V1 C0) 3 21 PSR OUPPPI 26
8.1 FSA (Finite State AUtOMALA) HL.....cc.eiieiiieiieiieieee ettt ettt e et et e et et e et e s et et e eneensesseesesseeseesnseesnneeennes 27
8.2 FSA (Finite State AULOMALA) H#2.......cceeiriririirieriintieteriert ettt ettt ettt ettt sttt et st ettt et et eaeebeebeeteeebeeabeenreen 28
8.3 Turing Machine: SUDIIACE L.......c.ccviiiiiieieiieiecieieeeee ettt ettt et e e s beestesteesbe et e e st e eseesseensaeesnseesnseeansneennns 29
8.4 Turing MacChine: Add 2........ceeiiieieiieieeteeet ettt sttt et et et e et et e essesseensesseensesssessesssensesssensaeansseesnseennes 30
8.5 ALOTTtNMS & UML......ooiiiiiiiicieit ettt ettt et et e e seesaeesbesseessesseessesssensesssensenssasseessanseessenseensesssaennns 31
8.6 NUMDET SYSIEM CONVETISION. ... ..cuvietietieeiertieierteetesteetesteesesseesseeseesseaseesseessesseessesseessessesssesseessesssessesssessesssessesssenes 32
8.7 Storing Data: Fixed and FIoating-POiNt...........ccccciiiiiiiiieriiiieii ettt ettt ae st aesssaeesaeesaneeenees 33
8.8 StOTINE DAtA: TEXL ..cuviviiiiiiiiiiiieieetet ettt ettt et e eteestesteebesreesbeeseesbesssesbeessasseessassesseaseessessaessesssesseanseensseessseesnns 34
8.9 Bit Operations: LogIC & SHift.......coooiiiiiii ettt st sttt 35
8.10 Binary Arithmetic: FIX@d-POINt. ... ..cooiiiiiiiiiiie ettt st seaee e 36
8.11 Binary Arithmetic: Floating-POiNt..........cc.oooiiiiiiiiei ettt st saee e 37
8.12 Assembly Language Programming..............ccooeeieiuieieiiieieeiceie ettt ettt st ee sttt sseentesseenteene e teeneeneeeneenns 38
8.13 Algorithms: From Concept — UML — ASS ... ittt see e sneeeenee 40
8.14 SiMPle ANSI-C PTOZIAM ....ocviivieiieiieiieeieit ettt et te st e e st estesse e teeseeseeneesseeneesseensesseensesseensesseensenseensenns 43
LN 0153 T £ OO P TSRS 45
0.1 ASCIL ENCOGING. ... eeuvitieitietieiieitesteete st ete st ete st etesteesteeseesseeseesseassesseaseesseessesseensesssensesssensenssenseassensennseesssessnseeens 46
9.2 Key Words (Chinese-English DICIONATY).......cc.coiveiiriieriirieiieiesieeeesieete st ete e esesseessesseessesseessessaessesssessesssessseens 48
9.3 ASS ASSCMDLY LANZUAZE. ......ccviivieiiiiiieieeiietietiete et et eetesteetesaeesaesseessesseessasssessaessesseessesseessesseessessseessseesssesensseens 52
9.4 EO109 (Computer Programming) — The FOIIOW-UP COUISE.........ccceerverrieiirrieiieieieeienteeee e ereesaeesnesieesesseeeenees 53
0.5 GIOUP MEMDET LiSt......iiuiiiiitiiiietietieieete ettt ettt sttt et e e e et e beessesbeesseeseesseeseessesseessessaesseessesseessesssessanssessenssens 54
9.6 EXaMPIe TestS fOr MILESIONES. ....ccueeeiietieiiieitieeieesee et etteeteeteesteeteessbe e teessseesseeasseessaessseenseessseesaenssseeesnssseeenns 55

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf) Semester 102-1 pg.ii



Introduction To Computer Science
J D White,

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. Is



1. Introduction
1.1 Facilitators
a. Lecturer: [ 1-][H -] FHFI
1. Background: http://www.xiaotu.com/whitejd/per/index.htm

Jonathon David White was born in Oakville, Canada but has since lived in many other
countries. Even during his undergraduate days at McMaster University, he already had a
cosmopolitan outlook on life, being active in the Chinese Christian Fellowship. After obtaining his
Ph.D., also from McMaster University, he worked and taught in China, Japan, and Taiwan — where
he met and married Wu Xiuman — and then Malaysia at Multimedia University. After 4 years (1999-
2003) in the Faculty of Engineering and Technology at the Melaka campus of Multimedia
University, he moved with his family to Taiwan. He is now Associate Professor at Yuan Ze
University. He and his wife have two daughters, Ai-en (Charity Grace) and Liang-En (Ruth Ann) as
well as two sons, You-en (Johann Donald) and Li-En (Leon Joshua).

In contrast to Dr. Chai's formal education in Computer Science, Dr. White's experience in
programming has largely been self-taught on a "need-to-know" basis. His introduction to ANSI-C
came in 1994, when he took a position in the Ocean Remote Sensing Institute in Qingdao, China.
Upon arrival, he was given a book introducing ANSI-C (in Chinese) and told to interface a
computer, laser and detector — allowing him to simultaneously learn ANSI-C and Chinese! This
"need-to-know" has resulted in the the method of teaching of this course.

Reflecting back, probably the most important decision made by Jonathon was that to follow

Jesus Christ. It is only in the light of this decision and the guidance received from God that one can
understand this life's trajectory.

2. Family: %% | JiEl https://www.youtube.com/watch?v=G1h9AhUh708
Research: http://www.xiaotu.com
Email: whitejd@xiaotu.com
Calendar: http://www.xiaotu.com
Office: R70740, R70723 & Lab
. Office Hours: Tuesdays and Thursdays, 11AM to 12 noon

b. Teaching Assistants
1. Kevin: Vietnamese Ph.D. student R70740
2. Aray: Taiwanese Ph.D. student R70740

1.2 Respect

a. Classroom Expectations

Arrive on Time (after attendance deemed absent)
Listen to Lectures

Ask Questions (bonus marks)

Listen to fellow students

Food and Drinks are OK in the classroom
Do not leave garbage in classroom

During class: (as this distracts other students)
i. No FACEBOOK,

ii. No computer games

iil. No checking email

iv. No videos

No v AW

Nk =

Students disobeying rules will be asked to leave the classroom. If cited more than three (3)
times, student will be asked to drop the course.

b. Rules for the Computer Room %?’fﬁ?ﬁ F TP I E

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 2s


http://www.xiaotu.com/
mailto:whitejd@xiaotu.com
http://www.xiaotu.com/
https://www.youtube.com/watch?v=G1h9AhUh7o8
http://www.xiaotu.com/whitejd/per/index.htm

1. FFO=EEE -
i YERFEFEE R E T .
ﬁ.&?i@%%%ﬁ’ﬁ%W@HM ?%ju
iii. &k lf %a\gg* B‘l[{"—[‘g’ ﬁ IR RIS
iv. f&/}ﬁ?ﬁLEIE{*jdfj[ FL{ \'l s S

2.9 ELE/[%E:
DB 3 3 9 By
ﬁﬁﬂielﬁwa¢pw+¢w

iii. =) [lﬁ@fﬁf:& PHEFT S SR sta i 55 %w Pl £

iv. E R AR ST )

v. I uﬁm’%e¥WWW%ﬁw
1.3 Course Overview

This course is the first in a series of three courses for Optics students dealing with computer
programming. The goals for this first course are twofold. First, for this first course is to have
students understand the fundamental knowledge of computer science including the history of

computers, representation of information, hardware components, programming concepts, role of
operating systems, and status of networking communication. Second, students will learn how to
write, edit and execute a Simple ANSI-C program. (7_[: IEE UI‘E' TR 2 |TP = RS g
I, AT L, AR ’EIEZ“” W, (B Ak ] e, 5 AR R
4ﬁw~, ki P T B %%e i ?ﬁp*ﬂ¢m%

NS HLIIK’?IE S AT k%ﬁf If

The teaching format is lectures followed by small groups(3-4 students) completing a

worksheet with help from the teacher and Tas. At certain points in the course we will make use of

the computer room to run code.
Table: Key Topics in this course

Topic gt
(Theory of Computing): Finite State Automata and Turing Machines "FICT‘%EE ﬁ%’?}
Algorithms and UML (Universal Modeling Language) 3?]‘;(35& A1 UML
Number Systems and Data Storage Qr@ A3 ,%’le&ﬂlf}’ﬂ’v_‘l i
Networks and Operating Systems RS (R SRR
Computer Organization -- Von-Neumann Architecture Ft TS A
Coding: Machine --> Assembly --> ANSI-C ]%TE/L?ET F%ﬁ

1.4 Textbooks/References

We will be using selected chapters from the following two textbooks in this course.

1. Ian Chai and Jonathon White, Structuring Data and Building Algorithms: An ANSI-C Based
Approach, McGraw-Hill (@ Caves, Contact: Tel : 02-23113000#212 / Fax : 02-2388-8822 at
McGraw-Hill) ISBN: 978-0071271882 Chapters 1, 7, 11, 12 (in e0109: 1, 2, 7)

2. Behrouz A. Forouzan, Foundations of Computer Science, Cengage Learning EMEA; 2 edition
(December 5, 2007) ISBN 978-1844807000, Chapters 2, 3,4, 5, 6, 7, 8. Ref: Appendix B

1.5 Key Websites
1. http://www.xiaotu.com/tea/yzueo109.htm (Animations for this class)
2. http://www.sdba.info (Textbook Animations for FSA and Turing Machines)
The first textbook will be used for all three courses in computer science offered by our
department. Key concepts are covered in the animations and view graphs

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 3s


http://www.sdba.info/
http://www.xiaotu.com/tea/yzueo109.htm

1.6 Course Delivery and Milestones

For this course the progress of students is monitored through a series of milestones. Figure 1
shows the topics to be studied in this course and their relationship, along with the key milestones in
terms of a modified UML diagram. In this diagram milestones are marked by diamonds.

& EO107 Milestones
Intro to Computer Science

FSA ( Number (Networks) Operating (Algorithms)
A7 BRAR B Systems Systems & UML

i ¢ i ‘ 4 hours
0"
Turing ( Data 4 hoursl .
Machines Storage I @ Test 1
Data

¢12 hours @
>
*

Operations J

’ 1 @ Test ‘
‘0 12 hours IIIIIII ‘ Test ]
@ Test I

Computer
Organization

Coding
(Machine)

Coding
Assembl

8 hours IIIIIIIIII’ Test I
4 hourSfssmsmammsn
j_and_Run_|

Continue to EO109
Computer Programming

Fig. 1 UML illustration of tested study milestones for this course.
In the above diagram the relationships between topics can also be seen. For example, in other
to understand Turing Machines, one must first understand FSA's. Topics such as Operating Systems
and Networks are independent — one does not need any previous knowledge to understand these
topics and failure to understand these topics will not hinder one's further understanding in the
course.

Fig. 1 also contains information about the number of lecture/contact hours will be spent in
studying each of these topics. For example, 12 hours will be spent studying FSA's and Turing
Machines, after which students progress will be evaluated by means of a short test.

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 4s



1.7 Grading

As can be seen in Fig. 1, there are a total of six key milestones at which on is evaluated. The
percentage each milestone contributes to the final mark is directly proportional to the number of
hours assigned this topic with each hour of study being awarded 2 points in the final evaluation. For
example, since twelve (12) hours are spent studying FSA's and Turing Machines, this milestone is
worth twenty-four (24) points in the final evaluation.

Table 1: Milestones and Their Weight for Midterm and Final Assessments

%E};% ZEE! €78 Milestone ﬁqﬂ;ﬁiifg ?ﬁﬁ;ﬁiﬁ?@;ﬁ
1 Milestone: Computer Theory 48% 24%

2 Milestone: Algorithms & UML 16% 8%

3 Milestone: Networks and OS 16% 8%

4 Milestone: Number Systems and Data Storage 0% 24%

5 Milestone: Computer Architecture and Coding 0% 16%

6 Milestone: First Program in ANSI-C 0% 8%

0 Attendance, Tutorials and Small Group work 20% 12%

0 BONUS: Successful Group Leaders, Pointing out errors |max 5% max 5%

Unlike other courses, each milestone is evaluated no a Pass/Fail basis and each student can try
the test as many times as are required to pass the milestone. If one passes the milestone at one's first
attempt, one receives the full point score for the milestone. If, however; requires a second attempt
to pass the milestone, then only 85% of the marks assigned that milestone will be awarded. The
calculation of marks for this course is summarized in Fig. 2.

Bonus marks are available for pointing out errors and mistakes in the teacher's lecture
materials. Each mistake will give the first student who points it out an additional 1 point. Each
student can earn a maximum of 5 points for finding errors in the teacher's lectures.

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 5s



EO107 Grading
Intro to Computer Science

S=
(total mark)

Ih: hours
g: [0,1] (Pass,Fail)
try [1,2,3+]

s+=1.5xh;

Fig. 2 UML representing Grading Procedure

For example, if a student named | [¥], passes milestones 1 and 2 on his 1% try, fails to pass
milestone 3, passes milestone 4 on his 2™ try, and fails to pass milestone 5 and has excellent class
performance, his final grade would be : s=(2*12+2*4+0+1.5%12+ 0+ 0) + 12 = 62%. Since
milestone 6 is dependent on milestone 5 (see Fig. 1), failure to pass milestone 5 means that ‘| ¥ is
not eligible to take the test for milestone 6. Since their are no other milestone 4,5,6 are not
dependent on milestone 3, failure to pass this milestone does not affect | [}] eligibility to pass the
future milestones.

1.8 Calendar

Class Topic Wk Date
1 Welcome 1 09.17 @ 18:30
2 Theory of Computing 2 09.27 @ 13:00
3 Theory of Computing 3 10.01 @ 09:00
4 Theory of Computing 3 10.04 @ 13:00
5 Theory of Computing 4 10.08 @ 09:00
6 Theory of Computing 4 10.11 @ 13:00

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 6s



Class Topic Wk Date
74 | Theory of Computing 5 10.15 @ 09:00
8 Algorithms & UML 5 10.18 @ 13:00

9¢ |Algorithms & UML 6 10.25 @ 13:00
10 | Networks and OS 7 10.29 @ 09:00
11 e |Networks and OS 7 11.01 @ 13:00
12 |Number Systems and Data Handling 8 11.05 @ 09:00
13 [Number Systems and Data Handling 8 11.08 @ 13:00
14 |Missed Milestones Retest (2™ attempt) 9 11.12 @ 09:00
. Missed Milestones Retest (3™ attempt) 9 11.15 @ 13:00

1.9 Detailed Lecture Plan / Teaching Schedule with References

a. Welcome (2hrs)

2. Textbooks & Notes
3. Evaluation

4. Division into small teams (3 to 4 students/team, choose group leader)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

15 | Number Systems and Data Handling A 11.22 @ 13:00
16  [Number Systems and Data Handling B 11.26 @ 09:00
17  [Number Systems and Data Handling B 11.29 @ 13:00
18 ¢ |Number Systems and Data Handling C 12.03 @ 09:00
19 | Computer Organization and Machine Language C 12.06 @ 13:00
20 |Computer Organization and Machine Language D 12.10 @ 09:00
21 Computer Organization and Machine Language D 12.13 @ 13:00
22 ¢ |Computer Organization and Machine Language E 12.17 @ 09:00
23 |JEdit & My 1st C-program E 12.20 @ 13:00
24 ¢ |JEdit & My 1Ist C-program F 12.24 @ 09:00
25¢ |Retry Milestones F 12.27 @ 13:00

Semester 102-1 pg. 7s




5. Notation
i. Underlined Blue Italic Arial is the expected time for an item
1i. Bold green underlined References: textbook, view graphs or animation

1v. double underlined black is tutorial

b. Theory of Computing (12 hrs + 1 hr milestone)
1. Finite State Automata (Chai, pgs. 369-384)
i. Presenting the crossing river problem
ii. Theory of FSA (Chai pgs. 369-374, b0fsaint.pps)
iii. Light Bulb Example
iv. Example: Even Number of 1s checker

vii. Group work: Model an ATM (Automatic Banking Machine)
viii. Online Paper:

http://www.enel.ucalgary.ca/People/wangyx/Courses/SENG523/Tutorials/ ATM
%20Architecture.pdf

1X. Build FSA Online (DEMOQO)
x. RE and Non-Deterministic FSAs (Chai pgs. 379-384. b4renfsa.pps)

xiii. Take up Tutorial (ESA#1)
xiv. Homework (ESA#2) (Chai pgs. 384-85, all questions)
2. Turing Machines (Chai pgs. 385-397, c-turing.pps + Chai links
1. Limitations of FSAs
ii. Details of a TM
iii. Sample TMs
a. Duplicator
b. Add 1
c¢. Incrementer
d. Number of 'a' = number of 'b' checker
iv. Real Turing Machine: http://spectrum.ieee.org/automaton/robotics/artificial-
intelligence/032610-diy-turing-machine
v. Introduction of Computer Room

a. Take up Homework FSA#2 + demo with Online-FSA (Chai pgs 384-85. all questions)
b. Review Turing Machine Slides
c. Demonstration of our Turing Machine Simulator with various TM and tapes
d. Small Groups, Tutorial (90 minutes) Turing Machine: Subtract 1 & Turing Machine Add
2 (101-1wk5-end)
e. Group Demonstration of their controller and tape (40') (107-7wk6-start)
4. A Practical Computer:
i. The Von Neumann Model
a. Introduction (Forouzan, ch 1.2)
b. Computational Philosophy
-Change A to B http://www.sdba.info/theory/c3btoa.swf
-Add 1 http://www.sdba.info/theory/add1.swf

ii. Computer Components (Forouzan, ch 1.3)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 8s


http://www.sdba/theory/c3btoa.swf%20
http://www.sdba/theory/c3btoa.swf%20
http://www.sdba.info/theory/c3btoa.swf
http://www.sdba.info/theory/c3btoa.swf
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/032610-diy-turing-machine
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/032610-diy-turing-machine
http://www.cs.montana.edu/~dynalab/fsa/fsa.html
http://www.cs.montana.edu/~dynalab/fsa/fsa.html
http://www.enel.ucalgary.ca/People/wangyx/Courses/SENG523/Tutorials/ATM%20Architecture.pdf
http://www.enel.ucalgary.ca/People/wangyx/Courses/SENG523/Tutorials/ATM%20Architecture.pdf
http://www.enel.ucalgary.ca/People/wangyx/Courses/SENG523/Tutorials/ATM%20Architecture.pdf

iii. History (Forouzan, ch 1.4)
5. Other (Forouzan, ch 1.5)
1. Social and Ethical Issues

6. MILESTONE #1 THEORY OF COMPUTING

c. Algorithms & UML (4 hrs)

1. Sample Algorithms:
1. Baking Muffins
ii. Dictionary Search for a word (linear-sequential vs binary)
i. Language Independence: Chai-71langua.pps T=1 hr
il. Quality Concerns Chai-72qualiti.pps
iil. Time Complexity Chai-73timeco.pps (Part 1)
iv. Error Propagation Chai-75errorp.pps

3. Expressing Algorithms in UML activity diagrams (already seen state diagrams)

ii. Symbolizing types of flow in UML e0109...6flow.swf
a. linear flow
b. repetition
c. conditions
4. Expressing an algorithm in UML (Baking Mulftins)
5. Tutorial: Algorithms and UML
i. Time to do as groups
ii. Take up together
6. MILESTONE #2 ALGORITHMS AND UML

d. Networks and Operating Systems (4 hrs)
1. Computer Networks Forouzan Ch 6
i. Overview
a. Criteria
b. Structures
c. Categories
d. an internet
ii. The Internet -- A Layered Structure http://www.xiaotu.com/tea/yzueo107/anetwork.swf
a. Application Layer (eg. www, telnet, telephony)
b. Transport Layer
-UDP vs TCP : http://www.skullbox.net/tcpudp.php
-UDP vs TCP: http://www.youtube.com/watch?v=KSJuSFqwEMM
-SCTP
c. Network Layer
d. Data Layer
e. Physical Layer 101-1wk13end

1i1. Review http://www.xiaotu.com/tea/yzueol07/anetwork.swf 101-1wk14start

1. Overview including diners problem http://www.xiaotu.com/tea/yzueo107/aos.swf
i1. In detail Forouzan Ch 7 101-1wki14end

3. MILESTONE #3 NETWORKING AND OPERATING SYSTEMS

e. Number Systems and Data Handling (72 hrs)
1. Number Systems
1. Why need to discuss? Data Storage is not base 10 it is base 2

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 9s


http://www.xiaotu.com/tea/yzueo107/aos.swf
http://www.xiaotu.com/tea/yzueo107/anetwork.swf
file:///E:/Dropbox/teayzu-1021/eo107/Dropbox/teayzu-1021/eo107/yzueo107z/%20http://www.youtube.com/watch%3Fv=KSJu5FqwEMM
http://www.skullbox.net/tcpudp.php
http://www.xiaotu.com/tea/yzueo107/anetwork.swf

ii. Number systems in general — see workbook

iii. Non-Positional Number Systems http://www.xiaotu.com/tea/yzueo107/num_zh.swf
a. Roman
b. Chinese

iv. Positional Number Systems: Representation :
a. Introduction: Course Notes
b. Examples Forouzan ch 2.2

v. Conversion between bases
a. Course Notes for examples and UML
b. Hand calculation for Base 3 to Base 10 and back.
¢. Numberous Examples Forouzan ch 2.2
d. http://www.xiaotu.com/tea/yzueol107/numsys.swf
e. http://www.xiaotu.com/tea/yzueo107/convert.exe

a. Review:
-http://www.xiaotu.com/tea/yzueo107/num_zh.swf
-http://www.xiaotu.com/tea/yzueo107/numsys.swf
-http://www.xiaotu.com/tea/yzueo107/convert.exe

b. Take up Tutorial Number System Conversion

c. Key Point: Loss of Precision in conversion for Real Numbers (Decimal Points)

http://www.xiaotu.com/tea/yzueo107/num_err.swf

d. Impacts on how we store our data.

. Data Storage (Chai Ch 1.1, Forouzan Ch. 3)

1. Data Types (storing different types) Forouzan Ch. 3.1

iv. Storing Numbers-Fixed vs Floating-Point, 2s comp and IEEE
a. Key Ideas http://www.xiaotu.com/tea/yzueo107/datastr.swf
b. Examples - Forouzan Ch. 3.2
c. Tutorial: Storing Data: Fixed and Floating-Point (60 minutes)
v. Other Types of Data Forouzan Ch. 3.3,
a. Storing Text
b. Storing Audio
c. Storing Images
d. Storing Video
vi. Tutorial: Storing Data: Text (See Appendix B: ASCII)

. Operations on Data
i. Logic: How to then application http://www.xiaotu.com/tea/yzueo107/abitoper.swt ,_
Forouzan Ch 4.1
a. NOT : (Unitary) Complementing a Bit Pattern (A to A)
b. AND : Unset Bits (Force Bit to Zero)
c. OR: Set Bits (Force Bits to One)
d. XOR : Flip Specific Bits
e. Tutorial Bit Operations: Logic & Shift Demo question (a)
1. Shift http://www.xiaotu.com/tea/yzueo107/abitoper.swf Forouzan Ch 4.2
a. Logical
b. Arithmetic
c. Tutorial Bit Operations: Logic & Shift Demo question (b) as example

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 10s


http://www.xiaotu.com/tea/yzueo107/numsys.swf
http://www.xiaotu.com/tea/yzueo107/num_zh.swf
http://www.xiaotu.com/tea/yzueo107/convert.exe
http://www.xiaotu.com/tea/yzueo107/abitoper.swf
http://www.xiaotu.com/tea/yzueo107/abitoper.swf
http://www.xiaotu.com/tea/yzueo107/2review.swf
http://www.xiaotu.com/tea/yzueo107/datastr.swf
http://www.xiaotu.com/tea/yzueo107/datastr.swf
http://www.xiaotu.com/tea/yzueo107/num_err.swf
http://www.xiaotu.com/tea/yzueo107/convert.exe
http://www.xiaotu.com/tea/yzueo107/numsys.swf
http://www.xiaotu.com/tea/yzueo107/num_zh.swf

iii. Complete Tutorial Bit Operations: Logic & Shift (30 min)
iv. Arithmetic (Addition/Subtraction)
a. Introduction to calculations (Chai) Chai-12calcu4.pps
b. Choosing the Containor (Chai) Chai-12exact5.pps
c. By hand (Subtraction is adding negative number!)... Chai
-base-10
-base-2 (http://www.xiaotu.com/tea/yzueo107/addfix.swf")
-Link to Animation http://www.is.wayne.edu/drbowen/casw01/AnimAdd.htm
d. S & M notation
-Explanation http://www.xiaotu.com/tea/yzueo107/addfix.swf
-Examples Forouzan Ch 4.3
-Tutorial Binary Arithmetic: Fixed-Point
http://www.xiaotu.com/tea/yzueo107/addfix.swf Demo Question (a)
e. Two complement notation
-Explanation http://www.xiaotu.com/tea/yzueol07/addfix.swf
-Examples Forouzan Ch 4.3
-Tutorial Binary Arithmetic: Fixed-Point
http://www.xiaotu.com/tea/yzueol07/addfix.swf _Demo Question (b)
v. Tutorial Binary Arithmetic: Fixed-Point (7107-7wk10-end)

vi. Review fixed-point http://www.xiaotu.com/tea/yzueol07/addfix.swf

viii. Real Numbers
a. Explanation http://www.xiaotu.com/tea/yzueo107/addfloat.swf (Part 1)
b. UML Forouzan Ch 4.3
c. Examples Forouzan Ch 4.3

d. Tutorial Binary Arithmetic: Floating-Point
http://www.xiaotu.com/tea/yzueo107/addfloat.swf (Part 1 Example)

ix. Tutorial Binary Arithmetic: Floating-Point
4. MILESTONE #4 DATA OPERATIONS
f. Computer Organization (8 hrs)
1. Overview of Computer http://www.xiaotu.com/tea/yzueo107/comporg.swf (Scene: Visual
Summary)
i. CPU Forouzan Ch 5.1
ii. Main Memory Forouzan Ch 5.2 eg. Maximum memory for 32-bit addressing with 32-bit
word is 16GB
iii. I/O System Forouzan Ch 5.3
iv. System Interconnect
a. http://www.xiaotu.com/tea/yzueol107/comporg.swt (Scene: Parallel/Serial)
b. Forouzan Ch 5.4,
. Review http://www.xiaotu.com/tea/yzueo107/comporg.swf (Scene: Visual Summary)
. Program Execution: Machine Cycles Forouzan Ch 5.5

. Tutorial: Assembly Language Programming (Appendix A: ASS Assembly Language)
program (a and b).

AN D B W
>
=
o
=
=
o
o
=]
=
o
@
[ —)
72
Q
~
=
S
w2
@!
+
j—U
&
o
=
o
@,
)—c
=
Qo
o
o
w2
w2
.
=
ae
)—U
—
=}
o
LN
=
el
=
agQ
)
=]
=~
=
=
N
&
=]
@
=
Sy
(=2
~A
S
-
N
<
X
-\
N
D
S
Q.

1. http://www.xiaotu.com/tea/yzueo107/comporg.swf Scene: ProgramRunning(2s Comp)
ii. blackboard for Assembly Language Programming question ¢

iii. Tutorial: Algorithms: From Concept —» UML — ASS (Homework)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 11s


http://www.xiaotu.com/tea/yzueo107/comporg.swf
http://www.xiaotu.com/tea/yzueo107/comporg.swf
http://www.xiaotu.com/tea/yzueo107/comporg.swf
http://www.xiaotu.com/tea/yzueo107/comporg.swf
http://www.xiaotu.com/tea/yzueo107/addfloat.swf
http://www.xiaotu.com/tea/yzueo107/addfloat.swf
http://www.xiaotu.com/tea/yzueo107/addfix.swf
http://www.xiaotu.com/tea/yzueo107/addfix.swf
http://www.xiaotu.com/tea/yzueo107/addfix.swf
http://www.xiaotu.com/tea/yzueo107/addfix.swf
http://www.xiaotu.com/tea/yzueo107/addfix.swf
http://www.is.wayne.edu/drbowen/casw01/AnimAdd.htm
http://www.xiaotu.com/tea/yzueo107/addfix.swf

iv. Take up Tutorial: Algorithms: From Concept —» UML — ASS
8. MILESTONE #5 COMPUTER ORGANIZATION AND ASSEMBLY
PROGRAMMING

g. JEdit & My 1** C-program. (4 hrs)

2. programming flow http://www.xiaotu.com/tea/yzueo107/2progl.swf
1. editing
ii. compiling
iii. linking
iv. running

3. Tutorial: Simple ANSI-C Program
4. MILESTONE #6 COMPUTER PROGRAM RUNNING

i. Time in Computer lab to practice (1 hr)
ii. Examination in groups (2 hrs)
iii. Simple ANSI-C Program http://www.xiaotu.com/tea/yzueo107/aqfin_lab.swf

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 12s


http://www.xiaotu.com/tea/yzueo107/aqfin_lab.swf
http://www.xiaotu.com/tea/yzueo107/2prog1.swf

2. Theory of computing
2.1 Finite State Automata (FSA)
a. Definition

An FSA is defined by a tuple (Q, Z, q., F, T):
—Q : set of states
— X : set of inputs symbols (alphabet)
—(, : starting state
—F : set of final state
— T : transition functions
An FSA can be represented
— graphically by state diagrams
— compactly with a transition table or
transition functions

~ [ SRR ABQ, %, ., F. T)

~Q: }{J{ﬁ:%i

_2 ﬁj\‘x s

o et

-F: ’I‘—:F )':{Jgrju

T

- /e ﬁ;ikrﬂ H»Fﬁz%—l 7
B2 /E{J:FJ..

~ i Fl@@}@ﬁﬁ:wﬂ@m%

IJF%‘JL(TE}%T"'

)

b. Example: Light Bulb and Switch

A simple example of an FSA is the combination of a light bulb and a switch. For this simple

system one can specify:
-Q = {OFF, ON}

— X = {P} where P stands for “Push the switch”

- qo={OFF}
—F ={OFF}

The transition function can be respresented in either of the three forms:

State \ Input P
ON OFF
OFF ON

T(OFF,P) - ON
T(ON,P) — OFF
or
[OFF,P, ON]
[ON ,P,OFF]

Fig. {fsa-example} Equivalent Representations of the Transition Function (a) transition matrix (b) transition

representations, these need to be specified independently.
c. The Language of an FSA: Regular Expressions

Regular expressions allow the language that an FSA accepts to expressed compactly. In

function (c) state diagram
Note that the state diagram visually shows the starting and final accept states but for the other

addition to the alphabet (¥) used by the FSA, regular expressions (RE) make use of the following

symbols:
Symbol Chinese
*  [zero or more of the previous group T s T 3 5D
| either previous or next group ) FAIFJE F& &l} e 'E[I[
() groups elements between the parentheses T ?ﬁ“ AHEEE 'EM
+ one or more of the previous group F]fJE'IEIfJﬂ"'E[Ir NG i i)
g empty string (NFSAs only) g3 Iﬂ"f[&

For example, the RE representing the light bulb in the previous example is (PP) *.
d. Deterministic and Non-Deterministic FSAs

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 13s




Finite State Automatas can be divided into two types: deterministic (DFSA) and non-
deterministic machines (NFSA). The former is a subset of the latter. The differences are
summarized in the following Table {fsa-nfsa dfsa}. Anything that can be expressed using a NFSA
can also be expressed using a DFSA.

DFSA NFSA
Transitions (T) must be specified for all input Not necessary to specify transitions (T) for all
symbols (X) for every state (Q) input symbols (X) for every state (Q)
Only one transition (T) may exist for each input Multiple transitions (T) may exist for one input
symbol (). symbol (%)
Any change in state (Q) requires an input symbol You can change states (Q) without using an
). input symbol ()

Table {fsa-nfSa_dfsa} Deterministic and Non-Deterministic Finite State Automata
2.2 Turing Machines
a. Introduction

Unfortunately an FSA is insufficient to model a complete computer. In order to do this we
need a Turing Machine. A Turing Machine is comprised of four components:

— Tape (infinitely long, divided into cells with each one holding a symbol from the alphabet
or a blank symbol)

— Head (reads or writes information to the tape and can move the tape left or right by one
cell)

— Controller (Modified FSA that specifies for a given state and input symbol, a symbol to
write on the tape, the direction to move the tape and a new state for the machine.

— Register (stores the current state of the machine)

The controller can be respresented in one of the following three forms:
— State Diagram
— Transition Table
— Set of Quintets (Current State, Input Symbol, Write, Move Tape, New State)
While a table is commonly used for computer programming, the state diagram representation is
often used for human usage.

b. Example: Light Bulb and Switch: Automatic Time setting.

If the machine is set to read and write one symbol per hour, we can specify the time of the day
to turn a light on off when we leave the house. . For symplicity lets assume that we want our light
to go on at 9AM in the morning, off at lunch time (12 noon), on at IPM and finally off at 5PM in
the each day. We could then use the following tape:

P P|P P

Assuming our head starts at the far right of the tape, and the initial state q.={OFF} We could
then write our controller either as a set of Quintets as where the first column is the current state, the
second column is the read symbol, the third column is the symbol to write, the fourth column is the
direction to move the tape and the final column is the new state or a state diagram (humans).
[OFF, , ,Right,OFF] e —
[ON , , ,Right,ON ] A
[ON ,P,P,Right,OFF]
[OFF,P,P,Right,ON ]

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 14s



3. Algorithms and UML Activity diagrams
3.1 Algorithms

An algorithm describes the steps that one needs to take to take in order to perform a certain
task or computation. On the one hand, the same algorithm may be expressed in many different
languages and still be the same algorithm even though it may look quite different. On the other
hand, different algorithms can be used to perform the same task. A recipe is an example of an
algorithm that describes how to prepare a specific dish or meal. Consider for example the following
algorithm that describes how one makes muffins.

1. Prepare ingredients: 2 cups flour, 1 tsp baking powder. 5 tbsp milk powder,
1 egg, tbsp olive oil, 1 cup water

Turn oven on to 250 C.

Mix wet ingredients (water,olive oil, egg)

Mix dry ingredients (milk powder,flour,baking powder)

Pour wet into dry.

Option: Mix 1 cup of fruit(i.e. blueberries) into batter.

Pour batter into muffin tray.

Bake in oven 20 minutes

If finished(brown), GOTO Step 11

10 Bake for 1 more minute. GOTO Step 9

11. Take out of Oven

EEEREEYE

This recipe explains the steps one follows to make muffins. It provides all the informaton that
one needs to know to be successful. The new cook does not need to rediscover anything. Ignoring
steps 6, 9, and 10 (in italics), the flow is seen to be linear — no decisions to make. Step 6 is a
conditional or option — a decision needs to be made about whether to add berries to the muffin.
Steps 9 and 10 indicate repetition: they need to be preformed a number of times until a condition is
met. As a final note, notice that the order in which steps 3 and 4 are completed is not important — in
fact, they could be done in parallel. In the following section we will introduce UML diagrams that
allow us to illustrate diagramatically this algorithm.

3.2 UML Diagrams = b
Expressing your . Start En:’n?&; 3 ]
algorithm clearly before . 1
starting to write computer Activity o x>0
code is crucial for creating - o ko
easy to understand, well Commentj Comment Itrue
Connector
structured code. In order to
help you to do this, a [ . ] _— )
standard, called Universal @ End y=- y=-
Modelling Language, UML
for short, has been Branch lTransmon _—
developed to help you learn 0 Ef = :bS;'xy; |
. Merge
to think before you start to o
code.
Figure {UML)} Parallel
Summarizes the key symbols Fig. {UML} (a) Key symbols used to describe algorithms using UML activity
that are used in UML diagrams. (b) Putting together the symbols to describe and algorithm to take
activity diagrams. These the absolute value of a number.

diagrams are used to help us
to show the steps in an algorithm. Fig. {UML} (a) identifies the symbols while Fig. {UML} (b) uses

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 15s




these symbols to describe the process are placed together to describe an algorithm to take the
absolute value of a arbitrary number.

For our UML diagrams, we a. b.
use a total of eight symbols:
Start, End, Activity, Comment,
Branch/Merge, Transition,
Comment Connector, and finally
Parallel. Within a given UML
diagram, there should only be
one start symbol. Activities are
conducted in the order they
appear in the diagrams. In the
case that order is not important < T
for two activities, then one can
use the Parallel bar to indicate e
this. In Fig. {UML} (b), one can
see that the algorithm starts with
a number (x). Next a decision is
made: if x>0 then we take the
right path. If x<0 we take the left
path. In the case that we take the
right path, the we just store the
value of x in the variable y. In the
case that we took the left path,
we change the sign of x and store
the result in y. The paths then join back together again and the algorithm ends. Note that if we take
the right path, then we do not take the right path.

[true

oLTb o}
ofle edybe

[true]

Fig {UML-flow} UML diagrams illustrating the four basic types of flow
(a) linear-sequential (b) conditional, (c) repetition (d) parallel processing.

Figure {UML-flow} illustrates the four types of flow that we can implement in a program. All
algorithms can be expressed in terms of a combination of these flow structures. In Fig.{UML-
flow}(a) linear-sequential flow is illustrated. In this type of flow, the activity in the upper box is first
completed and then activity in the next box can be started. In (b) conditional flow is illustrated.
Based on the the value of a variable or some condition either the right path is taken or the left path is
taken. Both paths are never taken. In (c) repetition is illustrated. In this type of flow, a given
activity is repeated until some condition is met. Finally in (d) a specialized type of flow is
illustrated: “parallel” processing. In this case, both activities are completed but the order in which
they are completed is not important. Thus they can be done in parallel. In contrast to sequential
processing, there is no order for activities. In contrast to conditional processing, both branches are
taken.

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 16s



4. Networks and Operating Systems

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 17s



5. Number Systems and Data Handling
5.1 Representing Numbers

two five eight ten twelve
o o L L L
oo 00 o0 o0 o0
| J o
S ©00 eee oeoo -9
a 0000 0000 0000 ::
“. 00000 0000 00000 000
L o0
“' 00000 0000 00000 000
L L 1 J L 000
00000 0000 00000 0000
L ] J 000 00 000
00000 9S00« 00000 0000
000 000 0000
00000 . 00000 00000
0000 0000 0000
$3553 33333 8333 22388
00000 o 00000
000000 m‘ 000000
00000 00000
:
L 2R 2R 4
-
Fig. {num-grp} Ways of dividing numbers into groups

A number system can be thought of as a way to group, symbolize and express a number or
quantity of objects to make counting and calculations involving these objects simpler. Fig. {num-
grp} illustrates ways of grouping numbers: groups of two, groups of five, groups of eight, groups of
10, groups of 12. In England, groups of twelve are often used, being denoted as a dozen. So we
then can then count five dozen and three eggs.

Our next step is to determine how to write and symbolize numbers. Table /numsym;} gives
some examples of symbols for various numbers.

Table {numsym} Glyphs to Represent Numbers

English Chinese Arabic Roman English Chinese ‘ Arabic ‘ Roman
Z€ero o 0 eleven B
one - 1 I twelve C
two = 2 thirteen D
three = 3 fourteen E
four [ 4 fifteen F
five S 5 A% sixteen G
Six -+ 6 seventeen H
seven + 7 eighteen I
eight A 8 nineteen J

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 18s



English ‘ Chinese ‘ Arabic Roman English ‘ Chinese ‘ Arabic Roman
nine Ju 9 fifty L
ten a A X hundred Fi C

Once one has decided how to group objects and symbolize numbers, the final question
involves how to use the symbols to represent these numbers. There are two choices — a non-
positional and positional number systems. In a non-positional number system a symbol has the
same value wherever it is written. In a positional number system a symbol's value is determined by
its location. For example, consider the symbol 'a' and the symbol 'b'. For a positional number
system, the value of 'ab'is different from the value of 'ba'. (21 means something different from 12.)
The actual meaning of 21 depends on how we have decided to group the numbers. If you have
decided to think in terms of groups of ten than this means two groups of ten plus one . If you have
decided to think in terms of groups of twelve, than this means two dozen plus one. Computers
generally work in base 2. But for humans it is awkward to have to have a long string of Os and 1s.
Thus we usually try to think in terms of an intermediate base: either base 8 or base 16. Table

{numrep} compares a number of ways to represent the numbers from zero to sixteen.
Table {numrep} Glyphs to Represent Numbers

Positional Systems (Base)

English Fl1

Ronan Base two base eight base ten base sixteen
Zero = 0 0 0 0
one - I 1 1 1 1
two = II 10 2 2 2
three = I 11 3 3 3
four P IV 100 4 4 4
five Sl \% 101 5 5 5
six K VI 110 6 6 6
seven  —  VII 111 7 7 7
eight It VI 1000 10 8 8
nine Je o IX 1001 11 9 9
ten - X 1010 12 10 A
eleven XI 1011 13 11 B
twelve XII 1100 14 12 C
thirteen X1 1101 15 13 D
fourteen XIv 1110 16 14 E
fifteen XV 1111 17 15 F
sixteen XVI 10000 100 16 10

As you learn to calculate in different bases, you will initially find it awkward and maybe a
little difficult. This is not because different bases are more difficult but rather because you have
memorized and become used to base 10. (If in primary school you had learned base 8, then this
base would seem natural to you. For example, using base six, you could use your right hand's
fingers for counting individuals and your left hand fingers to hold the number of groups of six!)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 19s



With this introduction, we can now look the definition of a positional number system more
formally in a way that allows us to include fractions:

0 8,..8,80.5,85 5.8 ..,

A A 1
n=...+SXb .. +S Xb'+SXb"+S8 Xb'+S ,Xb ... +S Xb".. )

Consider now a number represented by the symbols n=11.10. (Lets assume that the number
represents the number of cookies in a cookie jar. We can then express the number as:

1 0
— 1X10 + IX] 4+ — + — 2
" 10 100 2)

If n is in base ten, then we have eleven complete cookies and one tenth of a cookie. If n is in
base two, then we have three and one half cookies in the cookie jar. If n is in base sixteen then we
have seventeen and one sixteenth of a cookie in the cookie jar.

5.2 Converting between Bases in a Positional Number System

Since a computer works in base two and humans generally use base ten, we need to be able to
convert between bases. While one can do the conversion directly, it is easiest to convert via base
sixteen, i.e., fen < — sixteen< —two . The reason for using base sixteen is that the maximum

number before grouping in this base is fifteen. Fifteen can be broken down into one group of eight,

one group of four, one group of two and one group of one. Expressed numerically Fsixieny = 1111 1wo)
Fig. {fnumgrp16} Relating a group of objects in base sixteen to base two

second for a fraction. Table {convertFixed} gives the example for an integers while Table

{convertFraction} gives an equivalent example for a fraction before summarizing the process with

Figure {numgrp16; provides a schematic illustrating the grouping of objects in base sixteen.
We will summarize conversion with two short examples: the first for an integer and the
UML diagrams.

Table {convertFixed} Converting Between Bases for an Integer

Step base ten base base two comments
sixteen
Input 59
Convert to base sixteen = 59/16 =3 R 11 B three groups of sixteen,
eleven left over (11,0 =Bys)
3/16=0R 3 3B no groups of sixteen squared
Split 3 B
Convert to base two 3 B 0011 1011 see Fig. {numgrp16}
Answer/ Input 111011
Group 0011 1011
Convert to base sixteen 3 B 0011 1011 see Fig. {numgrp16}
Convert to base ten 11 3B (Bis= 1110)
3*16 +11 3 three groups of sixteen +
eleven

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 20s



Step base ten base base two comments
sixteen
Answer 59
Table {convertFraction} Converting Between Bases for a Fraction
Step base ten base sixteen ’ base two
Input 0,59
Convert to base sixteen 0,59x16=9,44 0,9
0,44 x 16 =7,04 0,97
0,04 x 16 = 0,64 0.970
0,64 x 16 =10,24 0,970A
Split 0,970A
Convert to base two 0,970A 0000, 1001 0111 0000 1010
Answer/Input 0,100101110000101
Group 0000, 1001 0111 0000 1010
Convert to base sixteen 0,970A 0000, 1001 0111 0000 1010
Convert to base ten 10/16 = 0.625 0,970A
(0 + 0.625)/16 0,970
(7 +0.0390625)/16 0,97
9+ 0,9
0.4399414063)/16
Answer 0.5899963379
b.
X : Integer A
(base 10) ‘1l S:integer
b: new base

S;(=:)I(\:’I§))Eb a=Sixbi+a
i++
[x>0] S:integer [Si>0] I a: integer ﬁ
(base b) (base ten)
(S=...8,8,8....) o

Fig. {convUMLint} UML activity diagram illustrating the conversion of an integer between
bases using calculations done in base ten. (a) Conversion from base ten to a new base (b)
Conversion from an arbitrary base back to base ten.

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 21s



Note thatin |[g,
converting back b.
and forth the final .0< a : fraction *
number is not b: new base I
b: old base
exactly the same as
the number we i=-1
input — this is a
common problem i
when using a Si=int(a*b) .
computer to work a=a*b-S; a=Sixb'+a
with fractions.
This problem has i-- -
led to the
development of two [a>0] [Si>0]
ways to represent a: fraction
number: fixed- S : fraction 1 I (base 10) I
. . (new base b) -
point and floating-
point.
The PI‘OCCSS Fig. {convUMLfrac) UML activity diagram illustrating the conversion of a fraction
of converting between bases using calculations done in base ten. (a) Conversion from base ten to a new
between bases can base (b) Conversion from an arbitrary base back to base ten.

be expresed with
UML diagrams as shown in Fig. {convUMLint} for the integer portion of the number and in Fig.
{convUMLfrac} for the fraction part of the number. In these diagrams, i++, indicates the
incrementation of 1 by the addition of 1, i-- indicated decrementing 1 by 1. MOD indicates taknig
the remainder, while % is indicative of integer division. For example, assuming the x =11 and
b=3
= x MOD b = 11 MOD 3 = 2
=x %$b=11 %3 =3
=x /b= 11 / 3 = 3.66666...
= int(x/b) = int(11/3) = 3

Finally note that the choice of directly converting from base ten to base two or using an
intermediate base (i.e. base sixteen) is entirely up to you as a user.
5.3 Storage of Numbers

Once your data has been converted from base ten to base two, one needs to decide how to

store the data. In modern computers there are generally two choices: fixed-point storage or floating
-point storage. Both have their advantages and disadvantages.

KK KK

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 22s



Fig. {umlstore! shows a UML diagram
indicating how an integer expressed in base
two, is converted into either sign and
magnitude or 2s complement format and stored
in computer memory. Note that if the integer
is positive, then there is no difference in the
way the number is stored.

&

a:integer,,,
s: sign | no sign
m: S&M | 2s not.

[a<0 & s=sign]

<1

store b

Fig. {umlstore} UML activity diagram illustrating the
storage of an integer (in base two) in either sign and
magnitude (S&M) or 2s Complement format (msb=most
significant bit)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 23s



6. Computer Organization

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 24s



7. Introduction to ANSI-C Programming

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 25s



8. Tutorials

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 26s



8.1 FSA (Finite State Automata) #1 FSA ISR IR

' RE CHFE
J D White e et
GROUP: DFSA/NFSA fiEdefd/S! F | ittt

a. What languages is accepted by each FSA? (Answer as a regular expression.)
- 5 5 —» (L —»Gx—"» 2
(J oo —»@QG @ tN § bb®
% a
S J .

d
b. Which one of the above FSAs is deterministic (i.e. DFSA)?

c. Draw a DFSA for each regular expression. Convert to NFSA.

RE )) DFSA NFSA
a*b*c asb’c
(a|b)* a,b
@*b*) | ab

(a*b)|(c+d) | a,b,c,d

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 27s



8.2 FSA (Finite State Automata) #2 FSA ISR IR

i RE D llES=
J D White O
GROUP: DFSA/NFSA FE’J&_@/a £ 7 F_@_[ic

a. Complete questions in lan Chai, Structuring Data and Building Algorithms, pg 383-384.

Write your answers on this tutorial sheet. Be prepared to explain your solutions.
1. Answer

2. NFA's....

3. Give Regular Expressions.

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 28s




8.3 Turing Machine: Subtract 1

Ian Chai, J D White,
GROUP:

a. Run Turing Machines

binary number
Turing Machine (TM)

1. Download the TM Simulator from http://www.sdba.info/theory/turmachi.htm

2. Run the three machines with their respective tape. Try to follow what is happening. Modify
the tapes and/or program and observe what happens.

b. Run this TM with given input tape and write final tape. Convert the Tuples representation of
the controller to a state diagram diagram representation. g,={MR}

TM Program (Tuples Representation)

Tape (input — final) | State Diagram Representation

;addl.tm:add 1 to binary number
(MR,0,0,>,MR) ; Move Right

(MR 1,1,>,MR)

(M , +»<,ADD)

(ADD 0, 1 >,ML) ; ADD one

(ADD, ,1,>,ML)

(ADD,1,0,<,ADD)
(ML, 0,0,<,ML) ; Move Left
(ML 1,1,<,ML)

(M ror ISTOP)

110 —

1 >

0 —

111 —>

c. Write a TM control file (.tm) to subtract 1 from a binary number. Express your answer in both
tuples representation (for computer) and state diagram (for humans) representations. Test run

with TM Simulator.

TM Program (Tuples Representation)

Test Tape (input — final)

150

11 > 10

10> 01

11100 —» 11011

TM Program (State Diagram Representation)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 29s



http://www.sdba.info/theory/turmachi.htm

8.4 Turing Machine: Add 2

Ian Chai, J] D White
GROUP:

a. Run Turing Machines

binary number %V
Turing Machine qgﬂ‘ ey

1. Download the TM Simulator from http://www.sdba.info/theory/turmachi.htm

2. Run the three machines with their respective tape. Try to follow what is happening. Modify
the tapes and/or program and observe what happens.

b. Run this TM with given input tape and write final tape. Convert the Tuples representation of
the controller to a state diagram diagram representation. g,={MR}

TM Program (Tuples Representation)

Tape (input — final) | State Diagram Representation

;addl.tm:add 1 to binary number
(MR,0,0,>,MR) ; Move Right

(MR 1,1,>,MR)

(M , +»<,ADD)

(ADD 0, 1 >,ML) ; ADD one

(ADD, ,1,>,ML)

(ADD,1,0,<,ADD)
(ML, 0,0,<,ML) ; Move Left
(ML 1,1,<,ML)

(M ror ISTOP)

101 —>

1 -

0 —

111 —

c. Write a TM control file (.tm) to add 2 to a binary number. Express your answer in both tuples
representation (for computer) and state diagram (for humans) representations. Test run with

TM Simulator.

TM Program (Tuples Representation)

Test Tape (input — final)

0—->10

1-511

100 - 110

TM Program (State Diagram Representation)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf

Semester 102-1 pg. 30



http://www.sdba.info/theory/turmachi.htm

8.5 Algorithms & UML

J D White
GROUP:

a. Express in UML an algorithm that adds two numbers, input by the user, and prints the result.

b. Express in UML an algorithm that sums & averages six numbers together. Print the results.

c. Express in UML an algorithm that requests the user to input his sex and displays a message
based on user's input.

For example, if the user is female, print: “You are very beautiful.” Otherwise, the algorithm
should print: “You are very handsome.”

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 31



8.6 Number System Conversion

J D White
GROUP:

a. Convert From Base 10 to Base 2

Base 10 1 ﬁ_ﬂ%}?
Base2 ﬁﬁduﬁv
Base 16 - éﬁﬂ%}?

Integer Real

16 — 10 000 2.1 —
21 > 5.3 —
95 - 11.75 —
132 —» 21.3 —
b. Convert From Base 2 to Base 10

Integer Real
1111 — 15 0.1 -
1101 - 1.101 -
1 - 11.01 -
11110011 —» 110.1 -
c. Convert From Base 2 to Base 16

Integer Real
111> 15 — F 0.1 —
1101—> - 1.101 -
1 - N 11.01 —
11110011— - 110.1 -
d. Base 16 to Base 2

Integer Real
16 — 0001 0110 0.1 -
21 — 1.101 -
95 — 11.01 -
e. Base 16 < Base 8

Sixteen to eight Eight to Sixteen

16 — 16 —
21 — 21 —

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf

Semester 102-1 pg. 32




8.7 Storing Data: Fixed and Floating-Point

J D White
GROUP:

1 byte (8 bits) 15|

a. Unsigned Fixed Point Storage Using 8 bits (unsigned char)

Integer (Q8.0) Real (Specify your Qm.n, not 1 answer)
16q9p—1 0000 — 0001 0000 2.1400)—>10.00011— 10000110 (Q2.6)
21laep —1 0101 - 5.300—~ 101.01001—
9519p— 101 1111 — 0.7500 —
13249~ 1000 0100 — 21 . 300 —

b. Signed Fixed Point Storage Using 8 bits (char)

Input

Sign & Magnitude

2s Complement

-l16—>

1001 o000

1111 o000

+16 >

-95—>

-18 —

+132—>

-5.3—>

(Q7.0)

(Q7.0)

(Q3.4)

(Q3.4)

-5.3—> =53

c. Floating-Point Storage using IEEE Excess 127 format (32 bits) (double)

IEEE Excess_127 format

I?ll:)l;t Scientific Notation (base 2) S Exp+. 127 8) . Mantissa 23)
+ Shifter Fixed-Point Number

575 [101.11=1.0111x2> |0| 1000 0001 0111 0000 0000 0OOOOOOOOOOO
17 0000 00000000000
-18 0000 00000000000
95 0000 00000000000
16 0000 00000000000
2.5 0000 00000000000
-21.3 0000 00000000000
0.75 0000 00000000000
0 0000 00000000000

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf

Semester 102-1 pg. 33




8.8 Storing Data: Text

J D White Glyph
GROUP:

1 byte (8 bits) 15|

Y

a. Store the following characters in 8-bits of memory (unsigned char). Use ASCII encoding.

(See Appendix or https://www.xiaotu.com/sdba/general/ascii.htm)

Glyph Code (Base 10 and Base 16) Binary Storage
A (41,,~65) 0100 0001
6
Z

b. Store the following characters in 16-bits of memory (unsigned long int). Use UTF-8
encoding.

(See http://www.pinyin.info/tools/converter/chars2uninumbers.html)

Glyph Code (Base 16) Binary Storage

A (0065,0= 0041) 0000 0000 0100 0OOO1

6

Z

_/i\

,g,g,

fa;

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf

Semester 102-1 pg. 34



http://www.pinyin.info/tools/converter/chars2uninumbers.html
https://www.xiaotu.com/sdba/general/ascii.htm

8.9 Bit Operations: Logic & Shift

J D White
GROUP:
a. LOGIC Operations: NOT(!), OR(]|), AND(&&), XOR (unsigned char)
X Xae Xo Xae) Xop Xae) Xp) Xae X
A 99 FF 00 01
B 98 99 99 99
1A
AllB
A && B
AXORB
b. Logical Shift: LSHFT LEFT/RIGHT (unsigned char)
Xao | X Xo LSHFT-LEFT LSHFT-RIGHT Comment
base 2 16 10 base 2 16 | 10

89 [59]0101 1001|1011 0010(B2|(178| 0010 1100 | 2C |44 Div. Truncate

3

10

32

99
c. Arithmetic Shift: ASHFT LEFT/RIGHT (char), 2s Complement Storage

Xao | Xis Xo ASHFT-LEFT ASHFT-RIGHT Comment

base 2 16 10 base 2 16 | 10

+3 | 3 (0000 0011|0000 0110( 6| 6 | 0000 0001 | 1 (1 DIV < 1/2

-3

+10
-10
+89
d. Circular Shift: CSHFT LEFT/RIGHT (unsigned char)
Xao | Xie Xo) CSHFT-LEFT CSHFT-RIGHT Comment
base 2 16 | 10 base 2 16 10
3 3
17

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 35




8.10 Binary Arithmetic: Fixed-Point

J D White
GROUP:
a. 2s Complement Fixed-Point (char)
X Xas) Xo X X Xas) Xo Xae) X
A | +3 | 0000 0011 || +3 30 12
B +2 | 0000 0010 -2 +09 -09
A+B | +5 [ 0000 0101
B+1| -2 | 1111 1110
A-B | +1 [ 0000 0001
b. S & M Integers: Using 8 bits (Needed for Floating-Point Work)
X | Xag Xo) Xao) Xo X Xo) Xao) Xo)
A | +3] 0000 o011 || +2 132 F
+2 | 0000 0010 -3 +09 -7C
A+B | +5 [ 0000 0101
A-B | +1 | 0000 0001

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf

Semester 102-1 pg. 36




8.11 Binary Arithmetic: Floating-Point

J D White
GROUP:
a. Example (IEEE Excess 127)
X IEEE Excess_127 Denormalize....
basel0 base 2 S| Exp(127+E) | Mantissa || S Exp Mantissa
A | +3.5 [11.1=1.11e1| 01000 0000 1100 0O || O |1000 0001| 1110 0000 0O
+0.7510.11=1.1e-1|0{0111 1110 1000 00| 00111 1111|1100 0000 OO
Align (small to larger radix) (B) 01000 0001| 0011 0000 OO
AtB [ +425( 0100.01 (01000 0001| 0001 OO |[ O |1000 0010| 1000 1000 OO
b. Two Positive
IEEE Excess_127 Denormalize....
X Xao) Xo) S Exp Mantissa ||S Exp Mantissa
A +0.5
+6.0
Align (small to larger radix)
A+B
c. One Positive and One Negative
IEEE Excess_127 Denormalize....
X X0y X S Exp Mantissa || S Exp Mantissa
A | 405
B | 6.0
Align (Smaller to Larger)
A+B
d. Check
IEEE Excess_127 Denormalize....
X | Xao Xo) S Exp Mantissa ||S Exp Mantissa
A | +10
+01
Align (Smaller to Larger)
A+B

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf

Semester 102-1 pg. 37




8.12 Assembly Language Programming

J D White
GROUP:

a. Write an Assembly languagecode to flip the sign of a (2s comp) fixed-point number
1. Get a number from the keyboard (MFE) to Memory M1C Start Code at M07
2. Switch the sign of the number (take the 2s complement) in M1C. Place the result in M1D
3. Write the code to write the number in M1D to the printer (MFF).
4. End (Stop) the program.

Address Code Op-code Action Program Section
MO 7 a. Input

MO8

M09 b. Calculation

MOA

MOB

MOC

MOD ¢. Output

MOE

MOF d. Return

b. Write code to convert a number in Sign & M to 2s complement notation.
Assume the 16-bit number is held at address M1C in S & M notation . Hint: Use JUMP.

Add | Code | Op-code Action Comments

MO7 |10EF |LOAD |R0O <« MEF Enter 0 Create Flag for
Negative Numbers

M08 |A000 |INC RO <« RO++ (in S&M notation)

MO9S |E010 |CSHFT |RO 10000000 00000000

MOA |111C |LOAD |R1 « M1C Load Number to change format

MOB check if negative

MOC

MOD Deal with negative

MOFE numbers, take 2s
complement of
magnitude

MOF

M10

M11 stop

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 38




c. Write Code to load your programs into computer memory. (Put in ROM).
Use the ASS assembly language code. Assume R0=0 at start-up

Address | Code

Op-code Action

Explanation

MO1

11FE

LOAD

Location to put program line 1 (M07)

MO2

MO3

M04

MO5

MO 6

MO7

MO8

MO9S

MOA

d. Alternate Solution to Question ¢

Add | Code | Op-code Action Comments

MO7 |10EF |LOAD |R0O « MEF Enter 0 Create Flag for

MO8 | A000 |INC RO < RO+ Negative Numbers

MO9S |E010 |CSHFT |RO 10000000 00000000

MOA Load Number to change format

MOB check if negative

MOC

MOD Deal with negative

MOE numbers, take 2s
complement of
magnitude

MOF

M10

M11 stop

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 39




8.13 Algorithms: From Concept — UML — ASS

J D White
GROUP:

Write an algorithm to (1) Multiply a fixed-point number by 2 (2) If the answer is larger than
60, then return the product. If the number is less than 60, return zero. F !~ f[ﬁ*?ﬁjﬁ (DB [
%ZQ'(*Z (YN AR N B AT 60 [l gl PN g T 60 o Al (f10 - Example: If
input=31 then the program algorithm will return 62. If input=5 then the program will find that
10<60 and so will return zero. {7~ :D[Iﬁ'\[ﬁ?ﬁﬁ“ FL31 > HEHN Tﬁ[ﬂ‘ [H 62 ; DDEJB‘E%‘ FL5 o (NELE
FIRERL T4 60 > IR A0 -

a. Write your answer in Pseudo-Code.

Algorithm:

Purpose:

Pre:

Post:

Return:

b. Write your answer as an UML activity diagram

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 40



c. Implement as code using ASS.
1. Assume that all registers have been initialized to 0 (zero).
2. Write code to get a number from the keyboard (&FE) to Memory. Start Code at &07¢,
3. Assuming the fixed-point data is held in Memory in &1C, write code to do the calculation. .
Place the result in &1D. Start the Code at address &09;¢,
4. Write the code to write the result to the printer (&FF).

Address | Codeqe | Instruction Action & Explanation

07 (16)

08 (16

09 (16)

OA(16)

OB(16)

OC(le)

OD(16)

OE(16)

OF(16)

10 (16)

11 (16)

12 (16

13 (16)

14 16

15 (16)

1 6 (16)

17 (16)

18 (16)

19 (16)

1A(16)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 41




d. Alternate solution with UML

.......... gradel(g
break(b

amnmmass® f<0
true

D GO

return f I

Address | Codegs) Assembly Explanation

07 (16)

08 (16)

09 (16)

OA(16)

OB(16)

OC(le)

OD(16)

OE(le)

OF(16)

10 (16)

11 (16)

12 (16)

13 (16)

14 (16)

15 (16)

16 (16)

*assumption that all registers initialized to zero is key to this program.

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 42



8.14 Simple ANSI-C Program

J D White
GROUP:

a. Using jEdit, write a simple program (8 pnts: all or nothing)
1. Write a Simple Program

2. Save it

3. Compile it

4. Link it

5. Run it

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 43




b. Sample 2™ Questions Write a program to solve a problem (2 pnts)
Note: Teacher will choose which question you are assigned.

1. Simple Addition
i. Declare a fixed-point and a floating-Point variable.
ii. Initialize these two variables. (See http://www.xiaotu.com/tea/yzueol07/adatastr.swf)
iii. Add the two variables together.
iv. Print the result.
2. Subtraction
i. Declare three fixed-Point variables.
ii. Initialize the first two of these variables.
iii. Subtract the 1** from the 2™ variables and store the result in the 3" variable..
iv. Print the values of all variables.
3. Multiplication (X)
1. Declare three floating-Point variables.
i1. Initialize the first two of these variables.
iii. Multiply the 1** from the 2™ variables and store the result in the 3™ variable..
iv. Print the values of all variables.
4. Division (/)
i. Declare three floating-Point variables.
ii. Initialize the first two of these variables.
iii. Multiply the 1* from the 2™ variables and store the result in the 3™ variable..
iv. Print the values of all variables.
5. Squaring (x?)
1. Declare one fixed-Point variables.
i1. Initialize this variables.
iii. Square the variable.
iv. Print the result.

Assigned Problem:

Solution Code Comments (Optional)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07/notes2.pdf Semester 102-1 pg. 44



http://www.xiaotu.com/tea/yzueo107/adatastr.swf

9. Appendix

LN o) 157 116 USRI RUPRRRURNt 36
12,1 ASCII ENCOGING. ...ccntiiietieiiete ettt ettt ettt ettt et e st e e et e et e st e et e st e st emeesaeemseeseenseeseenseeseenseeneenseesneeesnneenn 37
12.2 Key Words (Chinese-English DICHONATIY)......c.cccuriririririniineneneienienteteteteieett ettt e e e 38
12.3 ASS ASSEMDBLY LANGUAZE. ....c..covetiiiniiieiieiieteiceteet ettt ettt ettt s e et sttt sttt et eaeeneee 42
12.4 EO109 (Computer Programming) — The FOLLOW-UpP COULSE..........cccveriieiieriieiieiieiieieie e 43
12.5 GroUP MEMDET LISt.......ieciiiiieiieiieiieiet ettt ettt et et ete st e beesaesteessesseessesseessesseessesssensessseseessenseessenseensenseenn 44
12.6 Example Tests fOr MILESTONES. .......ccveriieieriiiiesiietesieeteettete et etesetesteeseesseessesseessessaesseessensaessenseessanseessaesnsseessseens 45
12.8 Theory of COMPULING (IM1)...c.viiieiieieiieieriiete et ete sttt et e st e teeeaesbeessesseesseeseessesseessesssessesssesseessesseessenseessenseens 45
12.9 Number Systems, Data StOTa@E(IM4A).........ccvervieieriieiesiieierteete st ete st essesttessesesesseessesseessesseessesseesssesssseesssesessseens 46
12.10 First Program in ANSI-C (IM)....cc.uieiuiiiiieieeiieeieeeieeteeete et e ste et e stteeteessaessteessaeenseesssaenseesssesnsassssseesensssneenns 48

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 45s



9.1 ASCII Encoding

Table A1: The ASCII encoding standard for text

Glyph Dec Hex Glyph Dec Hex Glyph Dec Hex
32 20 @ 64 40 96 60
! 33 21 A 65 41 a 97 61
" 34 22 B 66 42 b 98 62
# 35 23 C 67 43 c 99 63
$ 36 24 D 68 44 d 100 64
% 37 25 E 69 45 e 101 65
& 38 26 F 70 46 f 102 66
' 39 27 G 71 47 g 103 67
( 40 28 H 72 48 h 104 68
) 41 29 I 73 49 1 105 69
* 42 2A J 74 4A ] 106 6A
+ 43 2B K 75 4B k 107 6B
, 44 2C L 76 4C 1 108 6C
- 45 2D M 77 4D m 109 6D
46 2E N 78 4E n 110 6E
/ 47 2F 0] 79 4F 0 111 6F
0 48 30 P 80 50 p 112 70
1 49 31 Q 81 51 q 113 71
2 50 32 R 82 52 r 114 72
3 51 33 S 83 53 S 115 73
4 52 34 T 84 54 t 116 74
5 53 35 U 85 55 u 117 75
6 54 36 A% 86 56 \% 118 76
7 55 37 \W% 87 57 W 119 77
8 56 38 X 88 58 X 120 78
9 57 39 Y 89 59 y 121 79
58 3A Z 90 5A z 122 TA
; 59 3B [ 91 5B { 123 7B
< 60 3C \ 92 5C ] 124 7C
= 61 3D ] 93 5D ) 125 7D
> 62 3E A 94 S5E ~ 126 7E

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 46s




J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 47s



9.2 Key Words (Chinese-English Dictionary)

This table presents an index of key English terms along with their Chinese equivalent as used

in this course.
Table B1: Chinese-English Dictionary of Key Words

A1 (71 9) English Example
B main memory
?’T ¥ B registers
2 ?FPJEKT?&—»T E 2s Complement Representation
it e EE address bus
i ARES algorithm
TEeH gt application layer
e Ef {7 arithmetic logic unit;ALU
- :F'H: Artificial Intelligence; Al
i ’}”_FFIFI Assembly Language
a gﬁ"lﬂg‘\f Base 10
1 IR Base 16
= Eﬂg\\f Base 2
R == ) batch operating systems
= ‘Eﬁjﬂg\\f binary number
FEi PRTI bus topology
Fray byte
PRV T cache memory
fl IJ\’P;EEE'EJF {7 central processing unit; CPU
HOP AT T Common Gateway Interface ; CGI
@ﬁﬁﬂ@ﬁr?E control bus
PR RETEE data bus
e R G e data link layer
g deadlock
Ej%jﬁ decode
oI demand paging
%,Tﬂ‘ S demand segmentation
%ﬁ? AR device manager
Jer e I T DFSA/NFSA
1 e TR 2V direct memory access ; DMA

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 48s




I (1 9) English Example
73 ﬁ'??“ distributed systems
e e domain name
?ﬁf}i@a e ]'ﬁjﬁli’/%g domain name server ; DNS
Ko A Ethernet protocol
?ﬁﬁ Ak Excess System
o execute
v fetch
Tﬁﬁim:ﬁ file manager
=S IH«‘EETF%%LC File Transfer Protocol ; FTP
ﬂu_@ﬁ fixed-point 6.2
S %T floating-point 6.20E-023
i frames
#IEURIE 1R FSA

H‘EWV[EIF' BT ]}I

graphical user interface

Hypertext Markup Language ; HTML

input/output (I/O) subsystem

ﬁﬁ“ /ﬁzﬁ ﬁiﬁiﬂaﬁ

input/output controller

i _'AJ i 3 instruction register ; IR

a2y integer 9
il [fF RN AR Internet Mail Access Protocol ; IMAP
AR Internet Protocol ; IP

Fl #ripen 10 interrupt-driven I/O

IP b fH- IP address

TiE job

S keyboard

%‘Wﬁ% Machine Code

5 e 1] machine cycles

R EH memory manager

?L' 3 l?ﬁ‘ﬁﬁi I/O memory-mapped I/O

a\ﬁ}-{ﬂff . mesh topology

ﬁ%’f monitor

R multiprogramming

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 49s




I (i)

English

Example

LIRS 2D

Multipurpose Internet Mail Extension ; MIME

s

network

AfEE et

network layer

s P

non-storage device

éﬁm op-code

ESUIARE operand 0
(B 2k operating system

Fl pages

T AR parallel systems

73 %[U partitioning

¥t performance

‘éﬁ”ﬁ%} Dl physical addresses

E‘ﬁ”ﬁ%} et physical layer

?‘ﬁ'ﬁ[—é{(ij pipe-lining

TRy port number

ﬁ“éﬁfﬁ'%‘é e Post Office Protocol ; POP
77 A process

i ?E*FFE,'%{ process manager

A program

FEFUEHRIOH program counter ;: PC

= T/0

programmed I/O

R R

pseudo-code

[+

queues

Bty o 2 R

random access memory ; RAM

R

RE

B R

read-only memory ; ROM

E\Iﬂﬁ AR real-time system
[ f]ﬁg[‘f_ﬁ reliability
Eﬁi}{kﬁ = ring topology
EEE T routing

PHEE schedulers

P scheduling

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 50s




I (1 9) English Example
A = security
H= 0H 1 Ak single-user operating systems DOS
E‘J;{kﬁ[g star topology
LR starvation
SARREAE q%' state diagram

s ‘I?Ei’;“l'fﬁ

storage device

il s

Stream Control Transmission Protocol ;

SCTP

2l

time sharing

T

Transmission Control Protocol ; TCP

fH ﬁ%ﬁ‘ transport layer
@'%ﬁﬁg Turing Machine
A~ #JELDH B Unified Modelling Language ; UML
W e R Uniform Resource Locator ; URL
3] TVl EE Universal Serial Bus ; USB
U S ES TG A User Datagram Protocol ; UDP

E 'J?ﬁ i user interface

ITT =

“ﬂ

%

I

MR

virtual memory

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 51s




9.3 ASS Assembly Language
This is a summary of the instructions that one can use in doing the simple assembly language

programming.
Table C1: Aray's Simple Assembly Language
Instruction | Code Operands Comments
HALT 0
LOAD 1 [RD MS RD <« MS Load data from memory S into register D
SAVE 2 MD RS |MS « RD Save data from register D into memory S
LADD 3 |IRD| RA Load data to RD from memory address specified in RA
SADD 4 |RA| RS Save data from RS into memory address specified in RA
MOVE | 5 |RD| RS RD « RS
NOT | 6 RD « NOT (RS)
AND 7 |RD| RS1 [RS2|RD <« RS1AND RS2 (bit-wise)
OR 8 RD <~ RS1 OR RS2 (bit-wise)
XOR 9 RD <~ RS1 XOR RS2 (bit-wise)
INC A | R R « R+1 (R++)
DEC B | R R« R-1 (R-)
ADD C |RD| RS1 |RS2(RD « RSI1+RS2
JUMP D R [PC=(&MD) if R!=R0 then GOTO specified line in program.
CSHFT | E R n Circular Shift, n=0 Shift RIGHT else LEFT (no bit loss)
ASHFT F R n Arithmetic Shift, n=0 Shift RIGHT else LEFT
Table C2: Aray's Simple Assembly Language -- Examples
Machine Assembly Code Comment
Code
0000 |HALT stop the program.
1212 |LOAD R2 M12 copy data from memory location 12 to CPU register 2
6110 [NOTRIRI flip bits of number in CPU register 1 and store result in register 1
D212 |JUMPRI1 PC=31 If CPU Register 1 is not equal to zero then set the program counter
to get next instruction from memory location 31
A100 |INCRI Add one to the value in CPU Register 1

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 52s




9.4 EO109 (Computer Programming) — The Follow-Up Course

EO109 is the followup course to EO107. In this course, we will first review the formation of
a solution using using UML diagrams for a few problems and the assembly of a short piece of
ANSI-C code. After that we will go on to study programming in depth as we work to convert out
UML diagrams into ANSI-C code.

Milestones ?

UML ompile

Activit 1 Function
N | do nothing
main func

] Pointers™\
+ functions)

45 hours

Fig. D1 UML diagram of the key milestones and content of EO109 Computer Programming

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 53s



9.5 Group Member List

a. Up to 4 per group.
b. Work together on tutorials

c. One member may be called at random to represent the group. The group's mark depends on
his/her performance

d. Leader receives bonus marks if group does well.

Table E1: Group Members

Group Name: Group Number:
Role 1= Name Student ID Email Hand-Phone
1 Leader*: ﬁﬁ@-
2 Member
3 Member
4 Member

* Select one member as the group leader. He will be responsible for the work of the group

Table E2: Group Member Progress Form

Name Milestones Participation
English Fl 1 2 3 4 5 6 cl c2
1
2
3
4
Table E3: Attendance Record After Semester Midpoint
Class Number [base ten (base twelve)]
1 2 3 4 5 6 7 8 9 10(A) | 11(B) | 12(10)
Table E4: Attendance Record After Semester Midpoint
Class Number|[base ten (base twelve)]
13(11) | 14(12) | 15(13) | 16(14) | 17(15) | 18(16) | 19(17) | 20(18) | 21(19) | 22(1A) | 23(1B) | 24(20)

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 54s




9.6 Example Tests for Milestones

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 55s



a. Theory of Computing (M1)

J D White
GROUP:

Name ;3" Sample Test w/Solution

ID B
Oz
%\[ uHiW,

1. (a) Draw the state diagram for a DFSA, having input alphabet £={a,b} that accepts the regular
expression: ab* (b) Define the machine using a transition function T along with Q, q, and F

(a) Answer

—>» (3 b
@@b

(b) Answer
Q={1,3,E},qo={3},F={E},S={a,b}
T specified as...

[1,a,1]

[1,b,1]

[3,a,E]

[3,b,1]

[E,a,l]

[E,b,E]

accepted by the NFSA shown below:

2. (a) Express the FSA using transition functions (b) Express as a regular expression the string

—> O >0
y r
(2) (D)

a

(a)Q={E,0,1,2} go={E}, F={E} T=
[E,A,0]
[0,r,1]
[1,a,2] ;note-make deterministic
[2,a,2] ;note-make deterministic
[2,y,E]

(b) Answer: (Ara+y) *

3. Given the following Turing Machine Controller:

[b," ', 0 ,R,c] ; b is initial state
[e," '," ",R,e]
[e," ', 1 ,R,f]
[E," ','" '",R,b]

Assuming the machine starts at the leftmost square of the following blank tape in state b, what does

this machine write on the tape?
0 1

1 0

End of Test

Incorrect answers for question (1) with reasons....

—>»(3) i)@

a V
b @ b @ a Missing

/
b @

—> 03 O

v id

arrows
This is Start pivdcn
an NFS Arrow no end state foueh

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 56s




b. Algorithms & UML (M2) Name ¢,7": Sample Test w/Solution

[ nyn==
J D White Ig?,;fﬁg C—
u Hfnv
GROUP: T ——

1. Provide an informal definition of the word “Algorithm”. (Jf7 F1VE V)

jtf}’ﬁﬂﬁ?ﬁ?ﬁlijé]é# f[ﬁﬁﬂ@ﬁ‘}%&’h‘}%fﬁj (51U H3% - A step by step method for
solving a problem or doing a task

2. Determine the relationship between two positive integers. IF the integers are equal, you
should return 0. IF the first is bigger then you should return a positive number, if the second
is bigger, you should return a negative numbers-fixed

Example 1: if the user inputs 5 and 5 your algorithm should return the value 0 (fF[{[1,¥ 24 * ¥} 5
15 > ] output £} 0)

Example 2: If the user inputs 6 and 10 your algorithm should return -4. ([0 24 ™ £ 6 A
10 > [l output £%-4)

Pseudo-code UML Activity Diagram

Algorithm: |equal (first, second)

Purpose: To check to see if two
integers are equal

Pre: Given: two positive
integers (first and second)

Post: None
Return: integer (res):
Steps: res = first - second

return (res)

return z

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 57s



c. Networks and Operating Systems (M3)

Name ;3" Sample Test w/Solution

. ID #:HR:
J D White =1 ;%E -
uHiW,
GROUP: T e——
1. Name the 5 layers in the TCP/IP protocol.(ii g1t TCP/IP {705~ [ eh)
Application Transport Neltwork data link Physical
et (et A et PRI e

2. Atypical operating system ({*3 5%5%) has 5 key components. What are they?(— {14! E[p% %

Ul Memory Manager ll)rocess Manager Device File Manager
(- PO B U TR R e Manager (B E
I H

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 58s




d. Number Systems, Data Storage(M4)

J D White

GROUP:

1. Convert from Base 10 to Base 16 to Base 2

Name

17+ Sample Test w/Solution

ID B
Oz
%\[ uHiW,

Base Ten Base Sixteen Base Two
7 7 111
-25.25 -19.4 -11001.01

2. Write the bit representation of these numbers (Base two) and characters in memory:

Input Fixed (char) Floating-Point (f1loat Excess-127)

11 0000 0011 0 1000 0000 1000 0000 0000 0000 0000 OOO
-11 1111 1101 1 1000 0000 1000 0000 0000 0000 0000 OOO
1.1 Not required 0 0111 1111 1000 0000 0000 0000 0000 OOO
'Q’ 0101 0001 Note use ASCII encoding. Not stored in floating point container

3. Logic Operations: Specify the logic operator (e.g. AND) and bit pattern (e.g. 0110) to change

“in” to “out” . Use each logic operation only once.
IN(O|1]1]|1 IN |0]1(1(1 IN |0|1]1(1
OR |1]|0f0Of0O AND |OfO(O0]|1 XOR |1(1(1]|1
OouT|1(1|1|1 OuT |0(0|0(1 ouT |1(0|0|0
4. Addition and Subtraction (fixed-point storage) (short int) 16 bits
j |0000 0000 0000 0111 j+k |1111 1111 1110 00O0O
k |1111 1111 1101 1001 j-k |0000 0000 0010 1000
5. Addition and Subtraction (floating-point storage IEEE excess-127) (f1oat)
x Comments 0 1000 0001 1100 00OOO 0000 0000 0000 OOO
y Explanation 0 1000 0010 1010 0000 0000 0000 0000 000
x' |[Denormalize x 0 1000 0010 1110 0000 0OOO 0000 0OOO 0OOO
y' |[Denormalize y 0 1000 0011 1101 00OOO OOOO0 0000 00OOO OOO
x” |AlignRadix:Shift x' |0 1000 0011 0111 0000 0000 0000 0000 0OOO
A |Add: y' + x” 0O 1000 0011 10100 0OOO O0O0O0 0000 0000 OOO
x+y|Normalize A 0O 1000 0011 0100 0000 O0OOO 0000 0000 OOO
y” |2s comp: NOT(y')+1 |0 1000 0011 0011 0000 0000 0000 0000 0OO
R [IR=x"+y” 0 1000 0011 1010 O0OOO OOOO 0000 0OOO OOO
B |ovr=0:NOT(R)+1] sgn |1 1000 0011 0110 0000 0000 0000 0000 000
x-y|Normalize B 1 1000 0001 1000 0000 OOOO 0000 00OOO OOO

6. Retrieve the values from memory and write in base two

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 59s




Type

Bit Sequence

Base Two

Fixed (short int)

1111 1111 1101 1001

-100111

Float (excess 127)

0 1000 0001 1100 0000 0000 0000 OOOO 0OO 111

7. Convert from base two to base sixteen and base ten

Base Two Base Sixteen Base Ten
-1011 -B -11
110.11 6.C 6.75

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf

Semester 102-1 pg. 60s




e. Computer Organization Ff ETESA™ 78 (M5)
J D White

GROUP:

Name ;3" Sample Test w/Solution

ID B
Oz
%\[ uHiW,

1. Name the 3 subsystems in a modern computer(FytZF [ ETESEIIEY = (7= fol = £ak):

Central Processing Unit (CPU)
R 7

Memory Input/Output

H F' ﬁ‘ﬂr /H‘HrL I

2. Name the 3 parts that make up the CPU(Fit! i7" % CPU E U= T ):

Arithmetic logic unit (ALU) Registers Control Unit
SSELEET P ks 7

3. In program execution a machine cycle includes 3 phases. What are they?(7 - M=V g~ (|1 > —

S N Jal A B £

ol (e AN e 1R

Fetch }EEW

Decode széﬁ}%

Execute $/7

4. Write a program in the ASS assembly language to read two numbers (X,y) from the keyboard ,
double the first and then subtract the second number. Print the result. You need to provide
both the UML activity diagram and the ASS assembly language code. Assume that the
keyboard is at &EF and the Printer is at &FF and that at the start all registers are initialized to

zero ( i@l%ﬁﬂ

‘[/E IFEI b B Il &EF I—f‘

E SRS > KFF AHIRES)

ASHIFT-LEFT x
+ NOT(y) +1

*

inputx, y )—" zZ=2X-y

j—b‘ print z

Address | Code Instruct Action/Operands Explanation

0716 |11EF |LOAD Rl <-- MEF Get the 1°* number

0816y |12EF |LOAD R2 <-- MEF Get the 2" number

0916y |F110 |ASHET Rl Shift Left 1 |Double the first number
0A(15) |6220 |NOT IR2 Negate the 2™ number
OBs |A200 |INC

0C¢ [C312 |[ADD R3 = R1 + R2 Add the doubled and negated.
O0D1¢y |2FF3 |[SAVE MFF <--R3 Print the result (equal)
0E (16

OF (16

10 16

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 61s




f. First Program in ANSI-C (M6) Name £}7F": Sample Test w/Solution
A7
J D White g;fﬁf —
GROUP: I e——

1. Write a Simple Program in jEdit text editor.

int main(void) {

return(0) ;

}

2. Save it as an ASCII text file.

CTRL-S c:\sdbalyyy.c

3. Compile it into a binary file.

gcc -c -ansi -Wall yyy.c

4. Link it with other binary files (if required) to make an executable program.

gcc -o yyy.exe yyy.o

5. Run it

yyy . exe

J D White, Introduction to Computer Science(www.xiaotu.com/tea/yzueol07notes2.pdf Semester 102-1 pg. 62s




	1. Introduction
	1.1 Facilitators
	a. Lecturer: 白小明 小明白
	1. Background: http://www.xiaotu.com/whitejd/per/index.htm
	2. Family: 爱有力量 https://www.youtube.com/watch?v=G1h9AhUh7o8
	3. Research: http://www.xiaotu.com
	4. Email: whitejd@xiaotu.com
	5. Calendar: http://www.xiaotu.com
	6. Office: R70740, R70723 & Lab
	7. Office Hours: Tuesdays and Thursdays, 11AM to 12 noon

	b. Teaching Assistants
	1. Kevin: Vietnamese Ph.D. student R70740
	2. Aray: Taiwanese Ph.D. student R70740


	1.2 Respect
	a. Classroom Expectations
	1. Arrive on Time (after attendance deemed absent)
	2. Listen to Lectures
	3. Ask Questions (bonus marks)
	4. Listen to fellow students
	5. Food and Drinks are OK in the classroom
	6. Do not leave garbage in classroom
	7. During class: (as this distracts other students)
	i. No FACEBOOK,
	ii. No computer games
	iii. No checking email
	iv. No videos


	b. Rules for the Computer Room 電腦教室使用規定
	1. 上課注意事項：
	i. 準時到教室，遲到禁止進入教室。
	ii. 在教室裡請勿飲食，食物和飲料禁止帶進室內。
	iii. 每位同學上課都有固定位置，點名前請勿隨意更換位子。
	iv. 請勿隨意更動教室內電腦設定。

	2. 下課注意要點：
	i. 請將垃圾帶走，丟在安全門外的垃圾桶。
	ii. 請將座椅歸回原本的位置。
	iii. 每個禮拜會安排值日生在課後檢查教室，請務必配合。
	iv. 有違反規定的將登記扣分
	v. 以上如有不清楚的部份，請找老師或助教協助



	1.3 Course Overview
	1.4 Textbooks/References
	1. Ian Chai and Jonathon White, Structuring Data and Building Algorithms: An ANSI-C Based Approach, McGraw-Hill (@ Caves, Contact: Tel : 02-23113000#212 / Fax : 02-2388-8822 at McGraw-Hill) ISBN: 978-0071271882 Chapters 1, 7, 11, 12 (in eo109: 1, 2, 7)
	2. Behrouz A. Forouzan, Foundations of Computer Science, Cengage Learning EMEA; 2 edition (December 5, 2007) ISBN 978-1844807000, Chapters 2, 3, 4, 5, 6, 7, 8. Ref: Appendix B

	1.5 Key Websites
	1. http://www.xiaotu.com/tea/yzueo109.htm (Animations for this class)
	2. http://www.sdba.info (Textbook Animations for FSA and Turing Machines)

	1.6 Course Delivery and Milestones
	1.7 Grading
	1.8 Calendar
	1.9 Detailed Lecture Plan / Teaching Schedule with References
	a. Welcome (2hrs)
	1. Teacher Introduction (eo107-1.ppt) (101-1wk1)
	2. Textbooks & Notes
	3. Evaluation
	4. Division into small teams (3 to 4 students/team, choose group leader)
	5. Notation
	i. Underlined Blue Italic Arial is the expected time for an item
	ii. Bold green underlined References: textbook, view graphs or animation
	iii. dashed underlined pink indicates predicted break points in the lecture series
	iv. double underlined black is tutorial


	b. Theory of Computing (12 hrs + 1 hr milestone)
	1. Finite State Automata (Chai, pgs. 369-384)
	i. Presenting the crossing river problem
	ii. Theory of FSA (Chai pgs. 369-374, b0fsaint.pps)
	iii. Light Bulb Example
	iv. Example: Even Number of 1s checker
	v. Group work: Even number of 1s and Even number of 0s checker (101-1wk1)
	vi. Solving the River Crossing Problem (Chai pgs. 374-378, b3mantig.pps) (101-1wk2)
	vii. Group work: Model an ATM (Automatic Banking Machine)
	viii. Online Paper: http://www.enel.ucalgary.ca/People/wangyx/Courses/SENG523/Tutorials/ATM%20Architecture.pdf
	ix. Build FSA Online (DEMO)
	x. RE and Non-Deterministic FSAs (Chai pgs. 379-384, b4renfsa.pps)
	xi. Small Group Tutorial (50 minutes): (FSA#1) (101-1wk2)
	xii. Run selected FSAs Online (101-1wk3)
	xiii. Take up Tutorial (FSA#1)
	xiv. Homework (FSA#2) (Chai pgs. 384-85, all questions)

	2. Turing Machines (Chai pgs. 385-397, c-turing.pps + Chai links)
	i. Limitations of FSAs
	ii. Details of a TM
	iii. Sample TMs
	a. Duplicator
	b. Add 1
	c. Incrementer
	d. Number of 'a' = number of 'b' checker

	iv. Real Turing Machine: http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/032610-diy-turing-machine
	v. Introduction of Computer Room
	vi. Review of Lab Rules (eo107-1.ppt) (101-1wk3-end)

	3. General Purpose Turing Machine (101-1wk5-start)
	a. Take up Homework FSA#2 + demo with Online-FSA (Chai pgs 384-85, all questions)
	b. Review Turing Machine Slides
	c. Demonstration of our Turing Machine Simulator with various TM and tapes
	d. Small Groups, Tutorial (90 minutes) Turing Machine: Subtract 1 & Turing Machine Add 2 (101-1wk5-end)
	e. Group Demonstration of their controller and tape (40')  (101-1wk6-start)

	4. A Practical Computer:
	i. The Von Neumann Model
	a. Introduction (Forouzan, ch 1.2)
	b. Computational Philosophy
	- Change A to B http://www.sdba.info/theory/c3btoa.swf
	- Add 1 http://www.sdba.info/theory/add1.swf


	ii. Computer Components (Forouzan, ch 1.3)
	iii. History (Forouzan, ch 1.4)

	5. Other (Forouzan, ch 1.5)
	i. Social and Ethical Issues
	ii. Computer Science as a Discipline (101-1wk6-end)

	6. Milestone #1 Theory of computing

	c. Algorithms & UML (4 hrs)
	1. Sample Algorithms:
	i. Baking Muffins
	ii. Dictionary Search for a word (linear-sequential vs binary)

	2. Algorithms (Chai Ch 7) 101-1wk15start
	i. Language Independence: Chai-71langua.pps T=1 hr
	ii. Quality Concerns Chai-72qualiti.pps
	iii. Time Complexity Chai-73timeco.pps (Part 1)
	iv. Error Propagation Chai-75errorp.pps

	3. Expressing Algorithms in UML activity diagrams (already seen state diagrams)
	i. Symbols in UML activity diagrams (inserted in 102-1 year) eo107...algo.swf
	ii. Symbolizing types of flow in UML eo109...6flow.swf
	a. linear flow
	b. repetition
	c. conditions


	4. Expressing an algorithm in UML (Baking Muffins)
	5. Tutorial: Algorithms and UML
	i. Time to do as groups
	ii. Take up together

	6. milestone #2 Algorithms and UML

	d. Networks and Operating Systems (4 hrs)
	1. Computer Networks Forouzan Ch 6
	i. Overview
	a. Criteria
	b. Structures
	c. Categories
	d. an internet

	ii. The Internet -- A Layered Structure http://www.xiaotu.com/tea/yzueo107/anetwork.swf
	a. Application Layer (eg. www, telnet, telephony)
	b. Transport Layer
	- UDP vs TCP : http://www.skullbox.net/tcpudp.php
	- UDP vs TCP: http://www.youtube.com/watch?v=KSJu5FqwEMM
	- SCTP

	c. Network Layer
	d. Data Layer
	e. Physical Layer 101-1wk13end

	iii. Review http://www.xiaotu.com/tea/yzueo107/anetwork.swf 101-1wk14start

	2. Operating Systems 101-1wk14start
	i. Overview including diners problem http://www.xiaotu.com/tea/yzueo107/aos.swf
	ii. In detail Forouzan Ch 7 101-1wk14end

	3. milestone #3 Networking and Operating Systems

	e. Number Systems and Data Handling (12 hrs)
	1. Number Systems
	i. Why need to discuss? Data Storage is not base 10 it is base 2
	ii. Number systems in general – see workbook
	iii. Non-Positional Number Systems http://www.xiaotu.com/tea/yzueo107/num_zh.swf
	a. Roman
	b. Chinese

	iv. Positional Number Systems: Representation :
	a. Introduction: Course Notes
	b. Examples Forouzan ch 2.2

	v. Conversion between bases
	a. Course Notes for examples and UML
	b. Hand calculation for Base 3 to Base 10 and back.
	c. Numberous Examples Forouzan ch 2.2
	d. http://www.xiaotu.com/tea/yzueo107/numsys.swf
	e. http://www.xiaotu.com/tea/yzueo107/convert.exe
	f. Tutorial: Number System Conversion (60 minutes) (101-1wk6-end)

	vi. Review and Lessons Learned ( 101-1wk7-start)
	a. Review:
	- http://www.xiaotu.com/tea/yzueo107/num_zh.swf
	- http://www.xiaotu.com/tea/yzueo107/numsys.swf
	- http://www.xiaotu.com/tea/yzueo107/convert.exe

	b. Take up Tutorial Number System Conversion
	c. Key Point: Loss of Precision in conversion for Real Numbers (Decimal Points) http://www.xiaotu.com/tea/yzueo107/num_err.swf
	d. Impacts on how we store our data.


	2. Data Storage (Chai Ch 1.1, Forouzan Ch. 3)
	i. Data Types (storing different types) Forouzan Ch. 3.1
	ii. Variables (Chai) http://www.xiaotu.com/tea/yzueo107/datastr.swf (`01-1wk8-start)
	iii. Storing Numbers-Intro Chai-12 store3.pps (consider eo107 notes) (101-1wk7-end)
	iv. Storing Numbers-Fixed vs Floating-Point, 2s comp and IEEE
	a. Key Ideas http://www.xiaotu.com/tea/yzueo107/datastr.swf
	b. Examples - Forouzan Ch. 3.2,
	c. Tutorial: Storing Data: Fixed and Floating-Point (60 minutes)

	v. Other Types of Data Forouzan Ch. 3.3,
	a. Storing Text
	b. Storing Audio
	c. Storing Images
	d. Storing Video

	vi. Tutorial: Storing Data: Text (See Appendix B: ASCII)
	vii. Review http://www.xiaotu.com/tea/yzueo107/2review.swf (101-1wk8-end)

	3. Operations on Data
	i. Logic: How to then application http://www.xiaotu.com/tea/yzueo107/abitoper.swf , Forouzan Ch 4.1
	a. NOT : (Unitary) Complementing a Bit Pattern (A to A)
	b. AND : Unset Bits (Force Bit to Zero)
	c. OR : Set Bits (Force Bits to One)
	d. XOR : Flip Specific Bits
	e. Tutorial Bit Operations: Logic & Shift Demo question (a)

	ii. Shift http://www.xiaotu.com/tea/yzueo107/abitoper.swf Forouzan Ch 4.2
	a. Logical
	b. Arithmetic
	c. Tutorial Bit Operations: Logic & Shift Demo question (b) as example

	iii. Complete Tutorial Bit Operations: Logic & Shift (30 min)
	iv. Arithmetic (Addition/Subtraction)
	a. Introduction to calculations (Chai) Chai-12calcu4.pps
	b. Choosing the Containor (Chai) Chai-12exact5.pps
	c. By hand (Subtraction is adding negative number!)... Chai
	- base-10
	- base-2 (http://www.xiaotu.com/tea/yzueo107/addfix.swf )
	- Link to Animation http://www.is.wayne.edu/drbowen/casw01/AnimAdd.htm

	d. S & M notation
	- Explanation http://www.xiaotu.com/tea/yzueo107/addfix.swf
	- Examples Forouzan Ch 4.3
	- Tutorial Binary Arithmetic: Fixed-Point http://www.xiaotu.com/tea/yzueo107/addfix.swf Demo Question (a)

	e. Two complement notation
	- Explanation http://www.xiaotu.com/tea/yzueo107/addfix.swf
	- Examples Forouzan Ch 4.3
	- Tutorial Binary Arithmetic: Fixed-Point http://www.xiaotu.com/tea/yzueo107/addfix.swf Demo Question (b)


	v. Tutorial Binary Arithmetic: Fixed-Point (101-1wk10-end)
	vi. Review fixed-point http://www.xiaotu.com/tea/yzueo107/addfix.swf
	vii. Take-up Tutorial Binary Arithmetic: Fixed-Point(101-1wk11-start)
	viii. Real Numbers
	a. Explanation http://www.xiaotu.com/tea/yzueo107/addfloat.swf (Part 1)
	b. UML Forouzan Ch 4.3
	c. Examples Forouzan Ch 4.3
	d. Tutorial Binary Arithmetic: Floating-Point http://www.xiaotu.com/tea/yzueo107/addfloat.swf (Part 1 Example)

	ix. Tutorial Binary Arithmetic: Floating-Point

	4. milestone #4 Data operations

	f. Computer Organization (8 hrs)
	1. Overview of Computer http://www.xiaotu.com/tea/yzueo107/comporg.swf (Scene: Visual Summary)
	i. CPU Forouzan Ch 5.1
	ii. Main Memory Forouzan Ch 5.2 eg. Maximum memory for 32-bit addressing with 32-bit word is 16GB
	iii. I/O System Forouzan Ch 5.3
	iv. System Interconnect
	a. http://www.xiaotu.com/tea/yzueo107/comporg.swf (Scene: Parallel/Serial)
	b. Forouzan Ch 5.4,


	2. Review http://www.xiaotu.com/tea/yzueo107/comporg.swf (Scene: Visual Summary)
	3. Program Execution: Machine Cycles Forouzan Ch 5.5
	4. Architecture: CISC/RISC + Parallel Processing, Pipe-lining Forouzan Ch 5.6 101-1wk11-end
	5. Example of Simple Computer...Forouzan Ch 5.7 101-1wk12-start
	6. Tutorial: Assembly Language Programming (Appendix A: ASS Assembly Language) program (a and b).
	7. Take up Tutorial Assembly Language Programming 101-1wk13start
	i. http://www.xiaotu.com/tea/yzueo107/comporg.swf Scene: ProgramRunning(2s Comp)
	ii. blackboard for Assembly Language Programming question c
	iii. Tutorial: Algorithms: From Concept → UML → ASS (Homework)
	iv. Take up Tutorial: Algorithms: From Concept → UML → ASS

	8. milestone #5 Computer organization and assembly programming

	g. JEdit & My 1st C-program. (4 hrs)
	1. Computer Lab Introduction (6. Rules for Computer Lab) 101-1wk15end
	2. programming flow http://www.xiaotu.com/tea/yzueo107/2prog1.swf
	i. editing
	ii. compiling
	iii. linking
	iv. running
	v. debugging 101-1wk16end

	3. Tutorial: Simple ANSI-C Program
	4. milestone #6 computer program running
	i. Time in Computer lab to practice (1 hr)
	ii. Examination in groups (2 hrs)
	iii. Simple ANSI-C Program http://www.xiaotu.com/tea/yzueo107/aqfin_lab.swf




	2. Theory of computing
	2.1 Finite State Automata (FSA)
	a. Definition
	b. Example: Light Bulb and Switch
	c. The Language of an FSA: Regular Expressions
	d. Deterministic and Non-Deterministic FSAs

	2.2 Turing Machines
	a. Introduction
	b. Example: Light Bulb and Switch: Automatic Time setting.


	3. Algorithms and UML Activity diagrams
	3.1 Algorithms
	3.2 UML Diagrams

	4. Networks and Operating Systems
	5. Number Systems and Data Handling
	5.1 Representing Numbers
	5.2 Converting between Bases in a Positional Number System
	5.3 Storage of Numbers

	6. Computer Organization
	7. Introduction to ANSI-C Programming
	8. Tutorials
	8.1 FSA (Finite State Automata) #1
	a. What languages is accepted by each FSA? (Answer as a regular expression.)
	b. Which one of the above FSAs is deterministic (i.e. DFSA)?
	c. Draw a DFSA for each regular expression. Convert to NFSA.

	8.2 FSA (Finite State Automata) #2
	a. Complete questions in Ian Chai, Structuring Data and Building Algorithms, pg 383-384.
	1. Answer
	2. NFA's....
	3. Give Regular Expressions.


	8.3 Turing Machine: Subtract 1
	a. Run Turing Machines
	1. Download the TM Simulator from http://www.sdba.info/theory/turmachi.htm
	2. Run the three machines with their respective tape. Try to follow what is happening. Modify the tapes and/or program and observe what happens.

	b. Run this TM with given input tape and write final tape. Convert the Tuples representation of the controller to a state diagram diagram representation. qo={MR}
	c. Write a TM control file (.tm) to subtract 1 from a binary number. Express your answer in both tuples representation (for computer) and state diagram (for humans) representations. Test run with TM Simulator.

	8.4 Turing Machine: Add 2
	a. Run Turing Machines
	1. Download the TM Simulator from http://www.sdba.info/theory/turmachi.htm
	2. Run the three machines with their respective tape. Try to follow what is happening. Modify the tapes and/or program and observe what happens.

	b. Run this TM with given input tape and write final tape. Convert the Tuples representation of the controller to a state diagram diagram representation. qo={MR}
	c. Write a TM control file (.tm) to add 2 to a binary number. Express your answer in both tuples representation (for computer) and state diagram (for humans) representations. Test run with TM Simulator.

	8.5 Algorithms & UML
	a. Express in UML an algorithm that adds two numbers, input by the user, and prints the result.
	b. Express in UML an algorithm that sums & averages six numbers together. Print the results.
	c. Express in UML an algorithm that requests the user to input his sex and displays a message based on user's input.

	8.6 Number System Conversion
	a. Convert From Base 10 to Base 2
	b. Convert From Base 2 to Base 10
	c. Convert From Base 2 to Base 16
	d. Base 16 to Base 2
	e. Base 16  Base 8

	8.7 Storing Data: Fixed and Floating-Point
	a. Unsigned Fixed Point Storage Using 8 bits (unsigned char)
	b. Signed Fixed Point Storage Using 8 bits (char)
	c. Floating-Point Storage using IEEE Excess_127 format (32 bits) (double)

	8.8 Storing Data: Text
	a. Store the following characters in 8-bits of memory (unsigned char). Use ASCII encoding.
	b. Store the following characters in 16-bits of memory (unsigned long int). Use UTF-8 encoding.

	8.9 Bit Operations: Logic & Shift
	a. LOGIC Operations: NOT(!), OR(||), AND(&&), XOR (unsigned char)
	b. Logical Shift: LSHFT LEFT/RIGHT (unsigned char)
	c. Arithmetic Shift: ASHFT LEFT/RIGHT (char), 2s Complement Storage
	d. Circular Shift: CSHFT LEFT/RIGHT (unsigned char)

	8.10 Binary Arithmetic: Fixed-Point
	a. 2s Complement Fixed-Point (char)
	b. S & M Integers: Using 8 bits (Needed for Floating-Point Work)

	8.11 Binary Arithmetic: Floating-Point
	a. Example (IEEE Excess_127)
	b. Two Positive
	c. One Positive and One Negative
	d. Check

	8.12 Assembly Language Programming
	a. Write an Assembly languagecode to flip the sign of a (2s comp) fixed-point number
	1. Get a number from the keyboard (MFE) to Memory M1C Start Code at M07
	2. Switch the sign of the number (take the 2s complement) in M1C. Place the result in M1D
	3. Write the code to write the number in M1D to the printer (MFF).
	4. End (Stop) the program.

	b. Write code to convert a number in Sign & M to 2s complement notation.
	c. Write Code to load your programs into computer memory. (Put in ROM).
	d. Alternate Solution to Question c

	8.13 Algorithms: From Concept → UML → ASS
	a. Write your answer in Pseudo-Code.
	b. Write your answer as an UML activity diagram
	c. Implement as code using ASS.
	1. Assume that all registers have been initialized to 0 (zero).
	2. Write code to get a number from the keyboard (&FE) to Memory. Start Code at &0716)
	3. Assuming the fixed-point data is held in Memory in &1C, write code to do the calculation. . Place the result in &1D. Start the Code at address &0916)
	4. Write the code to write the result to the printer (&FF).

	d. Alternate solution with UML

	8.14 Simple ANSI-C Program
	a. Using jEdit, write a simple program (8 pnts: all or nothing)
	1. Write a Simple Program
	2. Save it
	3. Compile it
	4. Link it
	5. Run it

	b. Sample 2nd Questions Write a program to solve a problem (2 pnts)
	1. Simple Addition
	i. Declare a fixed-point and a floating-Point variable.
	ii. Initialize these two variables. (See http://www.xiaotu.com/tea/yzueo107/adatastr.swf)
	iii. Add the two variables together.
	iv. Print the result.

	2. Subtraction
	i. Declare three fixed-Point variables.
	ii. Initialize the first two of these variables.
	iii. Subtract the 1st from the 2nd variables and store the result in the 3rd variable..
	iv. Print the values of all variables.

	3. Multiplication (X)
	i. Declare three floating-Point variables.
	ii. Initialize the first two of these variables.
	iii. Multiply the 1st from the 2nd variables and store the result in the 3rd variable..
	iv. Print the values of all variables.

	4. Division (/)
	i. Declare three floating-Point variables.
	ii. Initialize the first two of these variables.
	iii. Multiply the 1st from the 2nd variables and store the result in the 3rd variable..
	iv. Print the values of all variables.

	5. Squaring (x2)
	i. Declare one fixed-Point variables.
	ii. Initialize this variables.
	iii. Square the variable.
	iv. Print the result.




	9. Appendix
	9.1 ASCII Encoding
	9.2 Key Words (Chinese-English Dictionary)
	9.3 ASS Assembly Language
	9.4 EO109 (Computer Programming) – The Follow-Up Course
	9.5 Group Member List
	a. Up to 4 per group.
	b. Work together on tutorials
	c. One member may be called at random to represent the group. The group's mark depends on his/her performance
	d. Leader receives bonus marks if group does well.

	9.6 Example Tests for Milestones
	a. Theory of Computing (M1)
	1. (a) Draw the state diagram for a DFSA, having input alphabet S={a,b} that accepts the regular expression: ab* (b) Define the machine using a transition function T along with Q, qo and F
	2. (a) Express the FSA using transition functions (b) Express as a regular expression the string accepted by the NFSA shown below:
	3. Given the following Turing Machine Controller:

	b. Algorithms & UML (M2)
	1. Provide an informal definition of the word “Algorithm”. (演算法的定義:)
	2. Determine the relationship between two positive integers. IF the integers are equal, you should return 0. IF the first is bigger then you should return a positive number, if the second is bigger, you should return a negative numbers-fixed

	c. Networks and Operating Systems (M3)
	1. Name the 5 layers in the TCP/IP protocol.(請寫出TCP/IP 協定的五個階層:)
	2. A typical operating system (作業系統) has 5 key components. What are they?(一個典型的作業系統有五個主要的組成單元，請寫出:)

	d. Number Systems, Data Storage(M4)
	1. Convert from Base 10 to Base 16 to Base 2
	2. Write the bit representation of these numbers (Base two) and characters in memory:
	3. Logic Operations: Specify the logic operator (e.g. AND) and bit pattern (e.g. 0110) to change “in” to “out” . Use each logic operation only once.
	4. Addition and Subtraction (fixed-point storage) (short int) 16 bits
	5. Addition and Subtraction (floating-point storage IEEE excess-127) (float)
	6. Retrieve the values from memory and write in base two
	7. Convert from base two to base sixteen and base ten

	e. Computer Organization 計算機組織 (M5)
	1. Name the 3 subsystems in a modern computer(寫出現代計算機中的三個主要子系統):
	2. Name the 3 parts that make up the CPU(寫出組成CPU的三個主要部分):
	3. In program execution, a machine cycle includes 3 phases. What are they?(在程式執行中，一個機器週期包含三個部分，請寫出:)
	4. Write a program in the ASS assembly language to read two numbers (x,y) from the keyboard , double the first and then subtract the second number. Print the result. You need to provide both the UML activity diagram and the ASS assembly language code. Assume that the keyboard is at &EF and the Printer is at &FF and that at the start all registers are initialized to zero（假設記憶體位置&EF位置代表鍵盤，&FF代表印表機）

	f. First Program in ANSI-C (M6)
	1. Write a Simple Program in jEdit text editor.
	2. Save it as an ASCII text file.
	3. Compile it into a binary file.
	4. Link it with other binary files (if required) to make an executable program.
	5. Run it




