
EO109
程式語言 (Programming Language)

Semester 102-2

Teacher Version With Solutions

白小明
Jonathon David White

元智大学光电系
R70740, R70723

WhiteJD@XiaoTu.com

修改:中華民國 103 年 5 月 17 日 11 時 39 分 45 秒
Modified AD14 年 5 月 17 日 (Rev 157)

“To Him Who Is Above And Beyond All”

Name Teacher

Student ID Teacher

Class ID Teacher

Cell Phone ???

Email Jonathondavid@gmail.com

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf) (Teacher) Semester 102-2 pg.i

mailto:WhiteJD@XiaoTu.com

Table of Contents
0. Introduction..3

0.1 Facilitators..3
0.2 Respect...3
0.3 Course Overview..4
0.4 Textbooks/References..4
0.5 Key Websites..4
0.6 Course Delivery and Milestones..4
0.7 Grading..4
0.8 Calendar...6
0.9 Detailed Lecture Plan / Teaching Schedule with References (see online)...7

1. Defining the Problem – Falling Objects, Optical Ray Tracing, Root Finding..................................8
2. Organizing a Solution – Algorithms, UML Activity Diagrams, Functions & Commented Code....9

2.1 Algorithms..9
2.2 UML Activity Diagrams...10
2.3 Example: UML for Baking Muffins...13
2.4 Functions ...13

3. Variables...14
3.1 Introduction (I Chai, pg 3-4)..14
3.2 Containers with Names (I Chai, Pg 4-6)..14
3.3 Fixed-Point vs Floating Point Containers (I Chai, pg 6-15) ...14
3.4 Declaration, Initialization, Usage...14
3.5 Review Example: From Problem to Final Solution..14

4. Flow..19
4.1 Review of the Types of Flow in Structured Programming...19
4.2 Motivation..19
4.3 Conditional...19
4.4 Repetition...19
4.5 Summary..19

5. Pointers...21
5.1 Declaration, Initialization, Visualization (I Chai, pg 15-26)..21
5.2 Variables, Pointers and Functions (I Chai pg 27-30)...21
5.3 Summary and Review Example: A simple program using pointers..21
5.4 Sample Questions...24

6. Arrays..25
6.1 Motivation: Falling Object Problem..25
6.2 Variables, Pointers and Arrays (I Chai, pg 36)...25
6.3 Declaration: static and dynamic arrays (I Chai, pg 37-42)..25
6.4 Initialization (I Chai pg 42-45)..25
6.5 Usage (I Chai pg 46-47)...25
6.6 Notation: Pointer vs Array (I Chai, pg 48)...25
6.7 Strings: An array of characters (I Chai, pg 48)..25
6.8 Arrays and Functions..25
6.9 Application..25
6.10 Summary..25

7. Appendix...26
7.1 ASCII Standard Encoding Table ...27
7.2 EO508 Coding Alchemy: Structure and Algorithms For Simulation 電腦模擬設計與實....................................28
7.3 Group Member List..29
7.4 Example Tests for Milestones..30
7.5 Tutorials...30

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf) (Teacher) Semester 102-2 pg.ii

0. Introduction
0.1 Facilitators

a. Lecturer: 白小明 小明白
1. Background: http://www.xiaotu.com/whitejd/per/index.htm

Jonathon David White was born in Oakville, Canada but has since lived in many other
countries. Even during his undergraduate days at McMaster University, he already had a
cosmopolitan outlook on life, being active in the Chinese Christian Fellowship. After obtaining his
Ph.D., also from McMaster University, he worked and taught in China, Japan, and Taiwan – where
he met and married Wu Xiuman – and then Malaysia at Multimedia University. After 4 years (1999-
2003) in the Faculty of Engineering and Technology at the Melaka campus of Multimedia
University, he moved with his family to Taiwan. He is now Associate Professor at Yuan Ze
University. He and his wife have two daughters, Ai-en (Charity Grace) and Liang-En (Ruth Ann) as
well as two sons, You-en (Johann Donald) and Li-En (Leon Joshua). Dr. White's experience in
programming has largely been self-taught on a "need-to-know" basis. His introduction to ANSI-C
came in 1994, when he took a position in the Ocean Remote Sensing Institute in Qingdao, China.
Upon arrival, he was given a book introducing ANSI-C (in Chinese) and told to interface a
computer, laser and detector – allowing him to simultaneously learn ANSI-C and Chinese! This
"need-to-know" has resulted in the the method of teaching of this course.

2. Family: 爱有力量 https://www.youtube.com/watch?v=G1h9AhUh7o8
3. Research: http://www.xiaotu.com
4. Email: whitejd@xiaotu.com
5. Calendar: http://www.xiaotu.com
6. Office: R70740, R70723 & Lab
7. Office Hours: Tuesdays and Thursdays, 1 PM to 5 PM

b. Teaching Assistants
1. Kevin: Vietnamese Ph.D. student R70740
2. Aray: Taiwanese Ph.D. student R70740

0.2 Respect
a. Classroom Expectations

1. Arrive on Time (after attendance deemed absent)
2. Listen to Lectures
3. Ask Questions (bonus marks)
4. Listen to fellow students
5. Food and Drinks are OK in the classroom
6. Do not leave garbage in classroom
7. During class: (as this distracts other students)

i. No FACEBOOK,
ii. No computer games
iii. No checking email
iv. No videos
Students disobeying rules will be asked to leave the classroom. If cited more than three (3)

times, student will be asked to drop the course.

b. Rules for the Computer Room 電腦教室使用規定
1. 上課注意事項：

i. 準時到教室，遲到禁止進入教室。
ii. 在教室裡請勿飲食，食物和飲料禁止帶進室內。
iii. 每位同學上課都有固定位置，點名前請勿隨意更換位子。

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 3

http://www.xiaotu.com/
mailto:whitejd@xiaotu.com
http://www.xiaotu.com/
https://www.youtube.com/watch?v=G1h9AhUh7o8
http://www.xiaotu.com/whitejd/per/index.htm

iv. 請勿隨意更動教室內電腦設定。
2. 下課注意要點：

i. 請將垃圾帶走，丟在安全門外的垃圾桶。
ii. 請將座椅歸回原本的位置。
iii. 每個禮拜會安排值日生在課後檢查教室，請務必配合。
iv. 有違反規定的將登記扣分
v. 以上如有不清楚的部份，請找老師或助教協助

0.3 Course Overview
This course is the second in a series of three courses for Optics students dealing with

computer programming. The goals for this first course are twofold. First, for this second course is to
have students understand the research methodology involved in formulating a problem,
diagramming the solution and then writing ANSI-C code to aid in the solution of the problem.

The teaching format is lectures followed by small groups(3-4 students) completing a
worksheet with help from the teacher and TAs.

Table 1: Key Topics in this course

Topic 题目

Problem formation and UML diagrams

Simple ANSI-C program

Basic Program with Functions and Variables (linear flow)

Using VP diagrams to understand code

Program Flow

Arrays and Records

0.4 Textbooks/References
We will be using selected chapters from the following two textbooks in this course.

1. Ian Chai and Jonathon White, Structuring Data and Building Algorithms: An ANSI-C Based
Approach, McGraw-Hill (@ Caves, Contact: Tel : 02-23113000#212 / Fax : 02-2388-8822 at
McGraw-Hill) ISBN: 978-0071271882 Chapters 1, 7, 11, 12 (in eo109: 1, 2, 7)

0.5 Key Websites
1. http://www.xiaotu.com/tea/yzueo109.htm (Animations for this class)
2. http://www.sdba.info (Textbook Animations for FSA and Turing Machines)

The first textbook will be used for all three courses in computer science offered by our
department. Key concepts are covered in the animations and view graphs
0.6 Course Delivery and Milestones

For this course the progress of students is monitored through a series of milestones. Figure 1
shows the topics to be studied in this course and their relationship, along with the key milestones in
terms of a modified UML diagram. In this diagram milestones are marked by diamonds.

.
0.7 Grading

Table 2: Milestones and Their Weight for Midterm and Final Assessments
項目
編號

項目名稱 Milestone
期中評量權重

Midterm
學期總成績權重

Final

1 Simple ANSI-C program : creating and debugging 8% 4%

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 4

Fig. 1 UML illustration of tested study milestones for this course.

http://www.sdba.info/
http://www.xiaotu.com/tea/yzueo109.htm

項目
編號

項目名稱 Milestone
期中評量權重

Midterm
學期總成績權重

Final

2 Problem formation and UML diagrams 24% 12%

3 Basic Program with Functions (linear flow) 48% 24%

4 Using VP diagrams to understand code 0% 16%

5 Program Flow 0% 12%

6 Arrays and Records 0% 12%

0 Attendance, Tutorials and Small Group work 20% 20%

0 BONUS: Successful Group Leaders, Pointing out errors max 5% max 5%

TOTAL 105% 105%

As can be seen in Fig. 2 and Table 2, grading is based both on (1) attendance and participation
in small groups, (2) performance on six key milestones and (3) bonus activities. Bonus marks are
available for pointing out errors and mistakes in the teacher's lecture materials. Each mistake will
give the first student who points it out an additional 1 point. Each student can earn a maximum of 5
points for finding errors in the teacher's lectures. The percentage each milestone contributes to the
final mark is directly proportional to the number of hours assigned this topic with each hour of study
being awarded 2 points in the final evaluation. For example, since six (6) hours are spent studying
problem formation and UML diagrams, this milestone is worth twelve (12) points in the final
evaluation and twice that on the midterm evaluation. Unlike other courses, each milestone is
evaluated on a Pass/Fail basis and each student can try three (3) times to pass the milestone. If one
passes the milestone at one's first attempt, one receives the full point score for the milestone. If,
however; requires a second attempt to pass the milestone, then only 85% of the marks assigned that
milestone will be awarded. For third attempt only 75% of the maximum marks are given.
Detailed requirements for each milestone are listed below:

1. Compile/Run 1 Function. Student must be able to write a simple program in jEdit (does not
need to do anything) and then compile, link and run the program. This includes downloading
and installing the compiler and editor on your own computer (if you do not have a computer,
you can request alternate examination) and demonstrating the use of the debugger program.

2. UML. Student must be able to look a problem and write a possible solution to the problem
using Universal Modelling Language Activity Symbols. Knowledge of start symbol, activity
symbol, flow symbol, comments, splitting and parallel processing is required.

3. Basic Program. Student should be able to write a simple program making use of functions
(written by himself, others and from the standard library). Sample question: write 2 functions
to calculate the calculate the volume and surface area of the cylinder. Allow the user to input
the radius and height of the cylinder. Call the two functions for calculation and print the
volume and surface area of an arbitrary cylinder input by the user using standard library
functions fprintf()

4. Code to VP-Diagram. Student should be able to draw VP diagrams for a short piece of ANSI-
C code that makes use of functions, pointers and variables.

5. Program flow. Student should be able to write a function that combines conditional, repetition
and sequential flow.

6. Arrays and Records. Student should be able to write programs that make use of arrays.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 5

0.8 Calendar
The times on this calendar are tentative and may be changed.

Table 3: Course Plan and time table

Class Topic Wk Date

1 Welcome, Course Introduction 1 02.18 @ 08:00

2 Problem Introduction – falling objects, optics, square root 1 02.18 @ 10:00

3 (review) 1st program: problem formation, Using jEdit 2 02.25 @ 08:00

4 (review) 1st program: Compiling & Linking, Debugging 2 02.25 @ 10:00

5 UML, Functions & Commented Code 3

6 UML, Functions & Commented Code 3

 Retry Milestone #1: 1st program 3 03.04 @ 12:00

7 Introduction to Variables 4

8 Introduction to Variables 4

9a Milestone 2: UML diagrams 5

9b Applying Variables & Functions: Falling Object 5

10 Applying Variables & Functions: Falling Object 5

11 Applying Variables & Functions: Optics 6

12 Applying Variables & Functions: Square Root 6

13 Application: Using Variables and Functions 6

14 Application: Using Variables and Functions 6

15a Milestone 3: Basic Program 7

15b Pointers – an introduction 7

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 6

Fig. 2 UML representing Grading Procedure

Class Topic Wk Date

16 Pointers – an introduction 7

17 Pointers – usage 8

18 Pointers – application & Introduction to Program Flow 8

a Retry Milestone 1: Simple Program (3rd and last attempt) 9 04.15 @ 8:00

b Retry Milestone 2: UML (2nd attempt) 9 04.15 @ 9:00

c Retry Milestone 3: Functions & Variables(2nd attempt) 9 04.15 @ 11:00

19a Milestone 4: Code to VP-diagrams 10

19b Program Flow 10

20 Program Flow 10

 Retry Milestone 2: UML (3rd and last attempt) 10 04.22 @ 12:00

21 Program Flow 11

22 Arrays 11

 Retry Milestone 3: Functions & Variables(3rd & last attempt) 11 04.22 @ 12:00

23 Milestone 5: Program Flow
Arrays

12

24 Arrays 12

25 Arrays – Application 13

26 Introduction to Records 13

27 Milestone 6: Arrays 14

28 Retry Milestone 4, 5, 6: Times to be announced 14

29 Retry Milestone 4, 5, 6: Times to be announced 15

23 Retry Milestone 4, 5, 6: Times to be announced 15

0.9 Detailed Lecture Plan / Teaching Schedule with References (see online)

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 7

1. Defining the Problem – Falling Objects, Optical Ray Tracing, Root Finding

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 8

2. Organizing a Solution – Algorithms, UML
Activity Diagrams, Functions & Commented Code
2.1 Algorithms

a. Definition
An algorithm describes the steps that one needs to take to

take in order to perform a certain task or computation. On the
one hand, the same algorithm may be expressed in many
different languages and still be the same algorithm even though
it may look quite different. On the other hand, different
algorithms can be used to perform the same task.

More formally, an algorithm is defined as:

b. Example: An algorithm to make muffins
A recipe is an example of an algorithm that describes how to prepare a specific dish or meal.

Consider for example the following algorithm that describes how one makes muffins*.

1. Prepare ingredients: 2 cups flour, 1 tsp baking powder. 5 tbsp
milk powder, 1 egg, tbsp olive oil, 1 cup water

2. Turn oven on to 250 C.
3. Mix wet ingredients (water,olive oil, egg)
4. Mix dry ingredients (milk powder,flour,baking powder)
5. Pour wet ingredients into dry ingredients.
6. (Option: Add 1 cup of fruit(i.e. blueberries) into batter.)
7. Mix leaving a few lumps in the batter
8. Pour batter into muffin tray.
9. Bake in oven for 20 minutes
10. If brown (finished cooking), GOTO Step 12
11. Bake for 1 more minute. GOTO Step 10
12. Take out of Oven

This recipe explains the steps one follows to make muffins. It provides all the information
that one needs to know to be successful. The new cook does not need to rediscover anything.
Ignoring steps 6, 10, and 11 (in italics), the flow is seen to be linear – no decisions to make. Step 6
is a conditional or option – a decision needs to be made about whether to add berries to the muffin.
Steps 10 and 11 indicate repetition: they need to be preformed a number of times until a condition is
met. As a final note, notice that the order in which steps 3 and 4 are completed is not important – in
fact, they could be done in parallel. In the following section we will introduce UML activity
diagrams that allow us to illustrate diagrammatically this algorithm.

* http://eatathomecooks.com/2010/05/snickerdoodle-muffins.html (Downloaded picture on 2014.04.16)

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 9

A finite sequence of steps,
- each step consisting of a number of operations,
- each operation

1. is rigorously defined and unambiguous
2. can be executed by a machine

Fig. {muffin} Snickerdoodle Muffin*

http://eatathomecooks.com/2010/05/snickerdoodle-muffins.html

2.2 UML Activity Diagrams
a. Overview

Expressing your
algorithm clearly before
starting to write computer
code is crucial for creating
easy to understand, well
structured code. In order to
help you to do this, a
standard, called Universal
Modelling Language, UML
for short, has been developed
to help you learn to think
before you start to code. (In
the past we have used UML
state diagrams to respresent
FSAs, now we will use UML
activity diagrams to represent
algorithms. If you have done
programming before, you may have made use of a flowchart to represent an algorithm. The UML
Activity diagram replaces a traditional flowchart.

Figure {UML} summarizes the key symbols that are used in UML activity diagrams. These
diagrams are used to help us to show the steps in an algorithm. Fig. {UML} (a) identifies the
symbols while Fig. {UML} (b) uses these symbols to describe the process are placed together to
describe an algorithm to take the absolute value of a arbitrary number.

UML activity diagrams
generally make use of five
different symbols to represent
Start, End, Activity (i.e. verb),
Comment, Branch or Merge and
three different types of lines to
represent Transitions (solid lines
with arrows), connect comments,
and finally indicate Parallel
processes. Within a given UML
diagram, there should only be
one start symbol. Activities are
conducted in the order they
appear in the diagrams. In the
case that order is not important
for two activities, then one can
use the Parallel bar to indicate
this. Fig. {UML} (b) shows how
one can diagram an algorithm
that returns the absolute value of
a number. The the algorithm
starts with a number (x)
(indicated in comment box as a
start condition.). Next a decision is made: if x>0 then we take the right path. If x<0 we take the left

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 10

Fig. {UML} (a) Key symbols used to describe algorithms using UML activity
diagrams. (b) Putting together the symbols to describe and algorithm to take

the absolute value of a number.

Fig {UML-flow} UML diagrams illustrating the four basic types of flow
(a) linear-sequential (b) conditional, (c) repetition (d) parallel processing.

path. In the case that we take the right path, we just store the value of x in the variable y. In the case
that we take the left path, we negate x and store the result in y. The paths then join back together
(merge symbol) again and the algorithm ends. Note that if we take the right path, then we do not
take the right path.

Figure {UML-flow} illustrates the four types of flow that can be implemented in a program.
All algorithms can be expressed in terms of a combination of these flow structures. In Fig.{UML-
flow}(a) linear-sequential flow is illustrated. In this type of flow, the activity in the upper box is first
completed and then activity in the next box can be started. In (b) conditional flow is illustrated.
Based on the the value of a variable or some condition either the right path is taken or the left path is
taken. Both paths are never taken. Note that the diamond at beginning of the condition represents
splitting of program flow while the diamond at the end represents a merging of the flow streams. In
Figure {UML-flow} (c) illustrates repetition. In this type of flow, a given activity is repeated until
some condition is met. Note that there is only one diamond representing the test condition and that
the transition line pointing back ends on a transition line (not an activity box) Finally in (d) a
specialized type of flow is illustrated: “parallel” processing. In this case, both activities are
completed but the order in which they are completed is not important. Thus they can be done in
parallel. In contrast to sequential processing, there is no order for activities. In contrast to
conditional processing, both branches are taken. Parallel processing is denoted by a thick lines that
mark both the beginning and end of the parallel activities.

b. Conditional Flow
In structured programming, conditional flow is generally structured in one of the three ways

shown in Fig. {UML-cond}. In each case comment boxes can be used to repesent the condition to
be tested. If the condition is very simple, then it can just be written on a line leaving the split
symbol.

In (a) we illustrate the structure if an action needs to be preformed no matter what the
outcome of the check. (b) represents the condition that we only need to preform an action if
something is true or false. For example, in our function to calculate absolute value of x, if we didn't
want to create a new variable y but rather keep only one variable x, then we need do nothing in the
positive case. Finally (c) represents a situation when we do different things in many different cases.
For example, a function that based on the maximum education received by an individual preforms a
different actions. In this case, on might process data based on whether the individual has graduated
from university, high school, primary school or has received no formal education.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 11

Fig. {UML-cond} Varieties of Conditional Flow (a) activities to do for both true and false conditions, (b)
activity to do only for one condition (c) multiple cases.

c. Repetition

In structured programming, repetition is generally structured in one of the two ways shown in
Fig. {UML-rep}. Figure {UML-rep}(a) represents the case in which the condition is tested before
the loop any activity is completed while (b) represents the case that the condition is tested after the
activities have been completed one time. The key difference is that, in the first case, it is possible
for the activities within the loop never to be executed Finally (c) represents the condition that the
looping condition is tested in the middle of the loop. In structured programming this type of
structure is forbidden as it makes
code difficult to read. Note that the
condition, if complicated, is
written in a comment box and one
transition is labelled as [true] or
[false]. Alternatively, if the
condition is simple we can write it
on one of the transitions lines.

d. Common technical drawing
mistakes

Other than logic, there are a
number of common technical
mistakes that are often made in
drawing these types of diagrams.
These are illustrated in
Fig.UMLmistake,namely, arrows
not connected to anything (a),
skipping the merge icon on
conditionals (b), feeding back into
an activity box (c), multiple inputs
into a merge box (OK in special

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 12

Fig. {UML-rep} Repetition Structures (a) Test before activities (b) test after activities (c) test in the
middle of activities (This is generally forbidden in structured programming.)

Fig {UMLmistake} Common mistakes in UML Activity diagrams

cases) (d) , multiple exits from a split symbol (OK in special cases) (e), non-rounded rectangles (f),
and circles (g). Non-rounded rectangles are used in structural
UML diagrams (not activity UML diagrams) to represent
classes and circles are used in Finite State Diagrams. Finally in
(h) we demonstrate the mistake of putting a number of different
steps all in one box or using complicated English to describe a
process (not machine executable). Each step should have its
own box in an activity UML diagram.
2.3 Example: UML for Baking Muffins

As a final example of UML, we will convert our baking
recipe to UML Activity diagrams, For simplicity in the
example, just the step number is written in the activity boxes
or comment box. The diagram makes it quite obvious that, at
least at one point in time, at least three tasks can be done
simultaneously. For example, I can have my youngest
daughter, Liang-En doing step 3, Li-En doing step 4 and I can
send my oldest daughter Aien warming up the oven.
2.4 Functions

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 13

Fig. UMLcake UML Activity diagram
for baking

3. Variables
3.1 Introduction (I Chai, pg 3-4)
3.2 Containers with Names (I Chai, Pg 4-6)
3.3 Fixed-Point vs Floating Point Containers (I Chai, pg 6-15)
3.4 Declaration, Initialization, Usage
3.5 Review Example: From Problem to Final Solution

a. Problem Background and Statement
A number of old bombs have been unearthed in

Gipuzko(cf Fig. {bomb}). These bombs have the shape of a
hollow sphere. Your coworkers have compiled a list of the
bombs found along with their weight, and inner and outer
diameters. Write a program to calculate the density of the
material used to make the bombs. (From the density, one can
then try to guess the material used to make the bombs.)

b. Think
The first step is think about how to solve the problem,

compile the equations needed (do a literature search if
necessary) and attempt to solve the problem for a simple case.

c. Summarize and write as mathematical variables the
information we have received:

douter : outside diameter of the spherical bomb
dinner : inside diameter of the hollow shell
m : mass of the bomb

d. Compile (search for in the literature) the necessary equations.
Density (p) is related to mass (m) and volume (V) of the material by
p(m,V) = m/V (1)

From basic geometry, the volume of a solid sphere can be related to its diameter (d) by the
expression as:

Vsphere (d)= pd3/6 (2)
The volume material of the hollow shell can be expressed as the difference in volumes of an outer
and inner sphere:

VhollowShell (Vouter ,Vinner) = Vouter - Vinner = V(douter) – V(dinner) (3)

e. Do a simple hand calculation
Having assembled the required equations, we can then make a sample calculation with some

simple numbers. For example,
douter = 20 cm
dinner = 10 cm
m = 30 kg

First we calculate the volumes of the outer sphere and the inner hollow region:

Vouter (douter)= pdouter
3/6 = = p 203/6 = 4000p/3

Vinner(dinner)= pdinner
3/6 = = p 103/6 = 1000p/6

From this we can estimate the total volume of material in the bomb:

VhollowShell(Vouter ,Vinner) = Vouter - Vinner = 4p/3 – p/6 = 7000p/6 ~ 3660 cm3

and finally the density of the material used to make the bomb casing

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 14

Fig. {bomb} A bomb from Gipuzko
http://bertan.gipuzkoakultura.net/img

/18/grandes/130.jpg

http://bertan.gipuzkoakultura.net/img/18/grandes/130.jpg
http://bertan.gipuzkoakultura.net/img/18/grandes/130.jpg

p(m,V) = m/V = 30000 g / 3660 cm3 ~ 8 g/cm3
We can then compare this density with normal density of materials. From Wikipedia we can

look up the densities of a number of materials: (Aluminum, 2.643. Brass, 8.553. Cobalt, 8.8.
Copper, 8.9. Gold, 19.32. Ice, 0.897. Iron, 7.86. Lead, 11.37 g/cm3) Our result is closest to that for
Iron and so we conclude that probably this bomb shell is made predominately from Iron with maybe
the addition of some Lead.

f. UML diagram
Once we have worked through a sample problem, the next step is to summarize our algorithm

using a UML diagram.

In the above diagram, we can see that the first step is to get the required information from the
user. Next we calculate both the inner and outer volumes for the spherical shell. Since order is not
important, we draw these steps in parallel (note that these both use the same function with different
inputs). This is followed by the calculation of the total volume of material in the bomb, followed by
the density of the bomb. Note that these steps must follow in order, i.e., we cannot calculate the
density of the bomb until we have calculated the total volume of material in the bomb. We cannot
calculate the total volume of material until we have first calculated the inner and outer volumes.
This is sequential programming.

g. Commented Code
In the commented code, we make the decisions about (1) the functions to use in preforming

the calculations, (2) decide whether we write our own functions, use standard library functions or
those written by another person and (3) determine the order for parallel operations in the UML
diagram.
/* bomb1.c : material in bomb shell */
/* (c)2013 J D White */
/* proto: vSphere */
/* proto: vHollow */
/* proto: density */
int main(void){

/* jlib/getFloat din,dout,m */
 /* Calc Vin call: vSphere */

/* Calc Vout call: vSphere */
/* Calc Vbomb call: vHollow */
/* Calc p call: density */
/* stdio/fprintf p,V */
return(0);

}
/* defn: vSphere

in: d
out: v

 calc: d*d*d*pi/6

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 15

Fig. {bomb-UML} UML Activity Diagram for Bomb Program

input: din,
dout,m

output:
p V,

Vout =
dout Xpi/6

3

Vin =
din Xpi/63

V =
Vout Vin-

p =
m V/

*/
/* defn: density

in: mass, volume
out: p

 calc: p = mass/volume
*/
/* defn: vHollow

in: vOut, vIn
out: v

 calc: v= vOut – vIn
*/

h. ANSI-C Source Code Initial Draft Version (for debugging)
In this step, one converts the commented code into real ANSI-C code remembering to (1)

declare, initialize and use all variables, and (2) prototypes, call and define all functions. In addition,
one seeks to ensure that the variable names are clear to anyone reading the program.
/* bomb1.c : material in bomb shell */
/* (c)2013 J D White */
#include <stdio.h> /* for fprintf */
#include “jlib.h” /* for getFloat */
double vSphere(double diameter);
double density(double mass, double volume);
double vHollow(double vOut, double vIn);
int main(void){

double dIn,dOut,m; /* input parameters */
double vIn,vOut,m,v; /* calculated */
fprintf(stdout,”inner dia”);dIn =getFloat();
fprintf(stdout,”outer dia”);dOut=getFloat();
fprintf(stdout,”mass”); m =getFloat();
vIn=vSphere(dIn);
vOut=vSphere(dOut);
v=vHollow(vOut,vIn);
p=density(m,v);
fprintf(stdout,”p=%lf”,p);
return(0);

}
double vSphere(double d){

double v;
v=d*d*d*pi/6;
return(v);

}
double density(double m, double v){

double p;
p=m/v;
return(p);

}
double vHollow(double vOut, double vIn){

double v;
v= vOut – vIn;
return(v);

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 16

}

i. Compile and resolve all warning and error messages
The program file is first compiled, with flags to check of ANSI-C violations and to display all

Warning (-Wall) messages.
gcc -c -ansi -Wall -g bomb1.c

After the program can compile without warning messages, one can then move onto the next
step.

j. Link
The program code is linked with the functions that have been called from the standard input

and output library (stdio), i.e. fprintf(), and that were written by others, i.e. getFloat() from jlib.
gcc -o b.exe bomb1.o jlib.o

k. Run
Finally we run the completed code with our test data to verify that the answers are as we

expect.
b
inner dia float >> 10.0
outer dia float >> 20.0
mass float >> 30.0
p=8.18926

l. Debug
 If our program does not give the expected answers then we need to look at the code step-by-

step to try to find logic or coding errors. We do this by calling the debugger program with our file
as the input data
gdb b.exe
One then steps through the code line-by-line to seek to find any errors. For the above code we might
start as follows:
b main
r
display dIn
display dOut
display m
display vIn
display vOut
display m
display v
n
This way we can step through the program and find which variable is not taking the value expected
and thus isolate the problem.

m. ANSI-C Source Code Final Version
In this step, we try to compress the code and make it simpler by removing unnecessary

variables and lines.
/* bomb1.c : material in bomb shell */
/* (c)2013 J D White */
#include <stdio.h> /* for fprintf */
#include “jlib.h” /* for getFloat */

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 17

double vSphere(double diameter);
double density(double mass, double volume);
double vHollow(double vOut, double vIn);
int main(void){

double dIn,dOut,m; /* input parameters */
fprintf(stdout,”inner dia”);dIn =getFloat();
fprintf(stdout,”outer dia”);dOut=getFloat();
fprintf(stdout,”mass”); m =getFloat();
fprintf(stdout,”p=%lf”,density(m,

 vHollow(vSphere(dOut),vSphere(dIn))));
return(0);

}
double vSphere(double d){return(d*d*d*pi/6);}
double density(double m, double v){return(m/v);}
double vHollow(double vOut, double vIn){

return(vOut – vIn);
}

Note that the final version has put all the functions into one line on the main program. If there
was any error in the program, this would be quite difficult to debug. Thus our first version is on
many lines.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 18

4. Flow
4.1 Introduction

a. Motivation
b. Three Types of Flow in Structured Programming

4.2 Decision
a. Format
b. Testable Conditions

4.3 Repetition
4.4 Summary

In structured programming there are four types of flow: linear, conditional, repetition and
parallel flow. In linear flow, execution starts at the beginning and continues line by line. Parallel
flow is outside the scope of this course. Condition and repetition are implemented as follows:

a. Conditional Flow
Two structures are used in ANSI-C to implement conditional flow.

1. if/else structure
int getSign(int k){

int sign;
if(k<0)sign=-1;
else sign=+1;
return(sign);

}
Depending on the value of k, positive or negative, either the if block or the else block is
executed.

2. if without else
int getAbsoluteValue(int k){

if(k<0)k=-k;
return(k);

}
In this case, we only need to take action if the input number is negative. If the number is positive
then there is nothing to do.

3. Complex if/else conditions.
For more than one instruction, one should use the curley brackets to surround the contents

if(a>=0){
 s=sqrt(a);
 fprintf(stdout,”sqrt(%lf) is %lf”,a,s);
}else{

s=sqrt(-a);
fprintf(stdout,”sqrt(%lf) is i%lf”,a,s);

}
4. switch statement with multiple cases:

switch(nsoln){
case 0 : fprintf(stdout,”no solution”); break;
case 1 : fprintf(stdout,”one solution”); break;

 case 2 : fprintf(stdout,”two solutions”); break;
default : fprintf(stdout,”more than 2 solutins”);

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 19

}
Alternatively the above code could be implemented as a series of if/else statements, as shown
below:
if(nsoln==0)fprintf(stdout,”no solution”);
else if(nsoln==1)fprintf(stdout,”one solution”);
else if(nsoln==2)fprintf(stdout,”two solutions”);
else fprintf(stdout,”more than 2 solutions”);

b. Repetition
Three structures are used in ANSI-C to implement repetition.

1. While (eg. summing numbers input at the keyboard)
int k=0, n=0;
k=getFixed();
while(k>0){

n+=k;
k=getFixed();

}
While loops are usually preferred over for loops for the case in which the number of times a loop
excecutes depends on statements within the loop itself.

2. For (eg. summing numbers from 0 to n)
int k, s=0,n=10;
for(k=0;k<n;k++){

s+=k;
}
For loops are generally used when the programmer knows in advance how many times the loop will
execute. In other words the number of loops is not affected by anything within the repetition
structure.

3. Do...while (eg. throw away negative numbers at beginning of file)
int k, n=0;
do{

k=getFixed();
}while(k<0);
Similar to a while loop but used when programmer needs the loop to execute at least one time.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 20

5. Pointers
5.1 Declaration, Initialization, Visualization (I Chai, pg 15-26)
5.2 Variables, Pointers and Functions (I Chai pg 27-30)
5.3 Summary and Review Example: Selections using pointers.

a. Problem Statement
You have been hired to prepare a menu based on patient choices and diet restrictions for

patients at an old age home. Residents may choose one portion of vegetables and one portion of
meat for their evening meal. In addition they may choose an double portion of single item. You
have been given the following chart (the real menu contains more items):

Category Item Portion Size (pieces)

Vegetable Peas 12

Vegetable Carrots 6

Meat beef 1

Meat mutton 2

Based on the choices of the resident and the constraints given above, write a program that asks
the resident to choose their menu items and prints the total number of pieces of food the resident
will receive.

b. Think and a Example Solution
Choose Vegetable=peas,
Choose Meat=mutton,
Choose DoublePortion=meat selection;
Calculate Total items = 12 + 2 +2 = 16

c. UML Activity Diagram
This one can draw.

d. Commented Code
int main(void){

/* set up the variables (do in main) */
 /* get vegetable choice, tell user quantity */
 /* get meat choice, tell user quantity */

/* get double portion selection */
/* calculate total items */

}

e. ANSI-C code
In order to write to test the code, we will not use conditional flow. Rather for the following

program we will write functions that we can later easily modify to allow the resident to enter their
personal choices, once we have verified our program runs correctly. Thus for our first version we
will force the choices to stay at a default choice and include a comment line to remind us of the next
modifications to get the data. Note that for the chooseDoublePortion function it is necessary to use
pointers to pointers in order to complete the manipulation.
/* menu.c: preparing a menu */
/* (c)2014 APR 14 J D White */
#include <stdio.h>
int *chooseVegetable(int *peas, int *carrots);

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 21

int *chooseMeat(int *beef, int *mutton);
int **chooseDoublePortion(int **f, int **v, int **m);
int calcItems(int nVegetable,int nMeat, int nDouble);
int main(void){

int peas=12, carrots=6;
int beef=1, mutton=2;
int *veggee=NULL, *meat=NULL;
int **doubleP=NULL, nitems=0;
veggee=chooseVegetable(&peas,&carrots);
meat=chooseMeat(&beef,&mutton);
doubleP=chooseDoublePortion(&veggee,&meat);
nitems=calcItems(*veggee,*meat,**doubleP);
fprintf(stdout,"total of %d items.",nitems);
return(0);

}
int *chooseVegetable(int *peas, int *carrots){

int *f=NULL;
fprintf(stdout,"Choose either %d peas or %d"

" carrots. (Enter p for peas)",*peas,*carrots);
f=peas;/* get choice of Veggie */
return(f);

}
int *chooseMeat(int *beef, int *mutton){

int *f=NULL;
fprintf(stdout,"Choose either %d pieces of beef or %d"

"pieces of mutton. (Enter b for beef)",*beef,*mutton);
f=beef /* get choice of Meat */
return(f);

}
int **chooseDoublePortion(int **v, int **m){

int **d=NULL;
fprintf(stdout,"Choose a double portion of veggees"

"or meat. (Enter first letter)");
d=v; /* get choice of double Portion */
return(d);

}
int calcItems(int nVegetable,int nMeat, int nDouble){

int items=nVegetable+nMeat+nDouble;
return(items);

}

f. Creating a VP diagram.

To help us to understand the code as it works, it is helpful for us to make a VP diagrams
showing the status of the variables and pointers at different points in the function.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 22

Next we will move down to after choosedoubleportion() returns....

Finally lets notice how the calcItem() function works.

After looking at these relatively complicated VP diagrams, you must be thinking, “Is there an
easier way?” The answer of course is, “Yes”. But we will need to wait until we can use arrays of
records and strings (an array of characters) or, alternatively a linked list of records and strings.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 23

Fig. xx VP diagram when the function as chooseDoublePortion() is called (a) returns(b).

Fig. xx VP diagram indicating status when the function calcItems() is called (a) and returns (b).

Fig. xx VP diagram indicating status when the function chooseMeat() is called(a) and returns (b)

5.4 Sample Questions
a. Write a function that determines if the roots of a quadratic equation are real or imaginary

and then calculates these roots. There are three pieces of information, that the subroutine
needs to share with the calling program: nature of the roots (real or imaginary) and the
two roots themselves.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 24

6. Arrays
6.1 Motivation: Falling Object Problem

a. Allowing us to write a complete table (well formatted output)
b. Allow input, calculation and output phases of a program to be separated

6.2 Variables, Pointers and Arrays (I Chai, pg 36)
6.3 Declaration: static and dynamic arrays (I Chai, pg 37-42)
6.4 Initialization (I Chai pg 42-45)
6.5 Usage (I Chai pg 46-47)
6.6 Notation: Pointer vs Array (I Chai, pg 48)
6.7 Strings: An array of characters (I Chai, pg 48)
6.8 Arrays and Functions

In this example two arrays are passed to a function. The purpose of the function is to swap the
contents of the two arrays with each other. Note how that passing an array to a function is the same
as passing the address of the first element, i.e. the function subroutine has prepared a pointer to hold
the address. Note that here is only one copy of the data in the arrays (not two) that is shared by the
calling function (main()) and the called function (exch()).

 1 /*cfunc.c: arrays w/functions*/
 2 /*2010, Andy Chung */
 3 void exch(int m[],int n[]);
 4 int main(void){
 5 int a[M]={31,11};
 6 int b[M]={24,26};
 7 exch(a,b);
 8 return(0);
 9 }
10 void exch(int m[],int n[]){
11 int k,tmp=0;
12 for(k=0;k<M;k++){
13 tmp=m[k];
14 m[k]=n[k];
15 n[k]=tmp;
16 }
17 return;
28 }

VP diagram of the system at start of line 12

a. How many copies of the array are there?

As can be seen in the VP diagram, passing the array to the function creates a new pointer that
points to the first element of the array. The elements of the array are not duplicated and so the
function and the main program work with the same array elements.
6.9 Application

a. Dropping Object Problem
b. Optical Ray Tracing
c. Root Finding

6.10 Summary
Arrays allow for the linking of like data of the same type.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 25

7. Appendix
7. Appendix...19

7.1 ASCII Standard Encoding Table ...20
7.2 EO508 Coding Alchemy: Structure and Algorithms For Simulation 電腦模擬設計與實....................................21
7.3 Group Member List..22
7.4 Example Tests for Milestones..23

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 26

7.1 ASCII Standard Encoding Table
Glyph Dec Hex Glyph Dec Hex Glyph Dec Hex

32 20 @ 64 40 ` 96 60

! 33 21 A 65 41 a 97 61

" 34 22 B 66 42 b 98 62

35 23 C 67 43 c 99 63

$ 36 24 D 68 44 d 100 64

% 37 25 E 69 45 e 101 65

& 38 26 F 70 46 f 102 66

' 39 27 G 71 47 g 103 67

(40 28 H 72 48 h 104 68

) 41 29 I 73 49 i 105 69

* 42 2A J 74 4A j 106 6A

+ 43 2B K 75 4B k 107 6B

, 44 2C L 76 4C l 108 6C

- 45 2D M 77 4D m 109 6D

. 46 2E N 78 4E n 110 6E

/ 47 2F O 79 4F o 111 6F

0 48 30 P 80 50 p 112 70

1 49 31 Q 81 51 q 113 71

2 50 32 R 82 52 r 114 72

3 51 33 S 83 53 s 115 73

4 52 34 T 84 54 t 116 74

5 53 35 U 85 55 u 117 75

6 54 36 V 86 56 v 118 76

7 55 37 W 87 57 w 119 77

8 56 38 X 88 58 x 120 78

9 57 39 Y 89 59 y 121 79

: 58 3A Z 90 5A z 122 7A

; 59 3B [91 5B { 123 7B

< 60 3C \ 92 5C | 124 7C

= 61 3D] 93 5D } 125 7D

> 62 3E ^ 94 5E ~ 126 7E

? 63 3F _ 95 5F

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 27

7.2 EO508 Coding Alchemy: Structure and Algorithms For Simulation 電腦模擬設計與實

EO508 is the followup course to EO109. In this course, we will first review the basices of
ANSI-C, that is variables, pointers, arrays and records. After that we will go on to study
programming in depth as we work to convert out UML diagrams into ANSI-C code. While the key
goal of EO109 is to learn ANSI-C, the key goal of the followup course is to use ANSI-C to
efficiently solve problems with code that others can understand.

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 28

Fig. D1 UML diagram of the key milestones and content of EO508 Computer Programming

7.3 Group Member List
1. Up to 4 per group. Select one member as the group leader. He will be responsible for the

work of the group
2. Work together on tutorials
3. One member may be called at random to represent the group. The group's mark depends on

his/her performance
4. Leader receives bonus marks if group does well.

Table E1: Group Members

Group Name: Group Number:

Role 名字 Name Student ID Email Hand-Phone

1 Leader*: 領導

2 Member

3 Member

4 Member

Table E2: Group Member Progress Form

Name Milestones Participation

English 中文 1 2 3 4 5 6 c1 c2

1

2

3

4

Table E3: Attendance Record After Semester Midpoint

Class Number [base ten (base twelve)]

1 2 3 4 5 6 7 8 9 10(A) 11(B) 12(10)

1

2

3

4

Table E4: Attendance Record After Semester Midpoint

Class Number[base ten (base twelve)]

13(11) 14(12) 15(13) 16(14) 17(15) 18(16) 19(17) 20(18) 21(19) 22(1A) 23(1B) 24(20)

1

2

3

4

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 29

7.4 Example Tests for Milestones
7.5 Tutorials

a. General
b. Falling Object
c. Optical Ray Tracing
d. Root Finding

J D White, 程式語言 (Programming Language)(www.xiaotu.com/tea/yzueo109/notes3.pdf (Teacher) Semester 102-2 pg. 30

