
-

C Reference Manual

Dennis M. Ritchie
Bell Telephone Laboratories

Murray Hill, New Jersey 07974

1. Introduction

C is a computer language based on the earlier language B [1]. The languages and their compilers differ in two
major ways: C introduces the notion of types, and defines appropriate extra syntax and semantics; also, C on the
PDP-11 is a true compiler, producing machine code where B produced interpretive code.

Most of the software for the UNIX time-sharing system [2] is written in C, as is the operating system itself. C is
also available on the HIS 6070 computer at Murray Hill and and on the IBM System/370 at Holmdel [3]. This paper
is a manual only for the C language itself as implemented on the PDP-11. However, hints are given occasionally in
the text of implementation-dependent features.

The UNIX Programmer’s Manual [4] describes the library routines available to C programs under UNIX, and also
the procedures for compiling programs under that system. ‘‘The GCOS C Library’’ by Lesk and Barres [5] describes
routines available under that system as well as compilation procedures. Many of these routines, particularly the ones
having to do with I/O, are also provided under UNIX. Finally, ‘‘Programming in C− A Tutorial,’’ by B. W. Ker-
nighan [6], is as useful as promised by its title and the author’s previous introductions to allegedly impenetrable sub-
jects.

2. Lexical conventions

There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and other separators.
In general blanks, tabs, newlines, and comments as described below are ignored except as they serve to separate to-
kens. At least one of these characters is required to separate otherwise adjacent identifiers, constants, and certain
operator-pairs.

If the input stream has been parsed into tokens up to a given character, the next token is taken to include the long-
est string of characters which could possibly constitute a token.

2.1 Comments
The characters /* introduce a comment, which terminates with the characters */.

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits; the first character must be alphabetic. The underscore ‘‘_’’ counts

as alphabetic. Upper and lower case letters are considered different. No more than the first eight characters are sig-
nificant, and only the first seven for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

-

C Reference Manual - 2

int break
char continue
float if
double else
struct for
auto do
extern while
register switch
static case
goto default
return entry
sizeof

The entry keyword is not currently implemented by any compiler but is reserved for future use.

2.3 Constants
There are several kinds of constants, as follows:

2.3.1 Integer constants
An integer constant is a sequence of digits. An integer is taken to be octal if it begins with 0, decimal otherwise.

The digits 8 and 9 have octal value 10 and 11 respectively.

2.3.2 Character constants
A character constant is 1 or 2 characters enclosed in single quotes ‘‘´ ’’. Within a character constant a single

quote must be preceded by a back-slash ‘‘\’’. Certain non-graphic characters, and ‘‘\’’ itself, may be escaped ac-
cording to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ \\

The escape ‘‘\ddd’’ consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the value
of the desired character. A special case of this construction is ‘‘\0’’ (not followed by a digit) which indicates a null
character.

Character constants behave exactly like integers (not, in particular, like objects of character type). In conformity
with the addressing structure of the PDP-11, a character constant of length 1 has the code for the given character in
the low-order byte and 0 in the high-order byte; a character constant of length 2 has the code for the first character in
the low byte and that for the second character in the high-order byte. Character constants with more than one char-
acter are inherently machine-dependent and should be avoided.

2.3.3 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e, and an optionally signed inte-

ger exponent. The integer and fraction parts both consist of a sequence of digits. Either the integer part or the frac-
tion part (not both) may be missing; either the decimal point or the e and the exponent (not both) may be missing.
Every floating constant is taken to be double-precision.

2.4 Strings
A string is a sequence of characters surrounded by double quotes ‘‘" ’’. A string has the type array-of-characters

(see below) and refers to an area of storage initialized with the given characters. The compiler places a null byte
(\0) at the end of each string so that programs which scan the string can find its end. In a string, the character ‘‘" ’’
must be preceded by a ‘‘\’’ ; in addition, the same escapes as described for character constants may be used.

-

C Reference Manual - 3

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal words and
characters in gothic. Alternatives are listed on separate lines. An optional terminal or non-terminal symbol is in-
dicated by the subscript ‘‘opt,’’ so that

{ expressionopt }

would indicate an optional expression in braces.

4. What’s in a Name?

C bases the interpretation of an identifier upon two attributes of the identifier: its storage class and its type. The
storage class determines the location and lifetime of the storage associated with an identifier; the type determines the
meaning of the values found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic variables are local to
each invocation of a function, and are discarded on return; static variables are local to a function, but retain their val-
ues independently of invocations of the function; external variables are independent of any function. Register vari-
ables are stored in the fast registers of the machine; like automatic variables they are local to each function and dis-
appear on return.

C supports four fundamental types of objects: characters, integers, single-, and double-precision floating-point
numbers.

Characters (declared, and hereinafter called, char) are chosen from the ASCII set; they occupy the right-
most seven bits of an 8-bit byte. It is also possible to interpret chars as signed, 2’s complement 8-bit
numbers.

Integers (int) are represented in 16-bit 2’s complement notation.

Single precision floating point (float) quantities have magnitude in the range approximately 10±38 or 0;
their precision is 24 bits or about seven decimal digits.

Double-precision floating-point (double) quantities have the same range as floats and a precision of 56
bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually infinite class of derived types constructed from the fun-
damental types in the following ways:

arrays of objects of most types;

functions which return objects of a given type;

pointers to objects of a given type;

structures containing objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and lvalues

An object is a manipulatable region of storage; an lvalue is an expression referring to an object. An obvious ex-
ample of an lvalue expression is an identifier. There are operators which yield lvalues: for example, if E is an ex-
pression of pointer type, then *E is an lvalue expression referring to the object to which E points. The name
‘‘lvalue’’ comes from the assignment expression ‘‘E1 = E2’’ in which the left operand E1 must be an lvalue expres-
sion. The discussion of each operator below indicates whether it expects lvalue operands and whether it yields an
lvalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section explains the result to be expected from such conversions.

-

C Reference Manual - 4

6.1 Characters and integers
A char object may be used anywhere an int may be. In all cases the char is converted to an int by propa-

gating its sign through the upper 8 bits of the resultant integer. This is consistent with the two’s complement repre-
sentation used for both characters and integers. (However, the sign-propagation feature disappears in other imple-
mentations.)

6.2 Float and double
All floating arithmetic in C is carried out in double-precision; whenever a float appears in an expression it is

lengthened to double by zero-padding its fraction. When a double must be converted to float, for example by
an assignment, the double is rounded before truncation to float length.

6.3 Float and double; integer and character
All ints and chars may be converted without loss of significance to float or double. Conversion of

float or double to int or char takes place with truncation towards 0. Erroneous results can be expected if the
magnitude of the result exceeds 32,767 (for int) or 127 (for char).

6.4 Pointers and integers
Integers and pointers may be added and compared; in such a case the int is converted as specified in the discus-

sion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is converted to an integer as
specified in the discussion of the subtraction operator.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this section (highest
precedence first). Thus the expressions referred to as the operands of + (§7.4) are those expressions defined in
§§7.1_7.3. Within each subsection, the operators have the same precedence. Left- or right-associativity is specified
in each subsection for the operators discussed therein. The precedence and associativity of all the expression opera-
tors is summarized in an appendix.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers itself free to
compute subexpressions in the order it believes most efficient, even if the subexpressions involve side effects.

7.1 Primary expressions
Primary expressions involving . , −>, subscripting, and function calls group left to right.

7.1.1 identifier
An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type is speci-

fied by its declaration. However, if the type of the identifier is ‘‘array of . . .’’, then the value of the identifier-
expression is a pointer to the first object in the array, and the type of the expression is ‘‘pointer to . . .’’. Moreover,
an array identifier is not an lvalue expression.

Likewise, an identifier which is declared ‘‘function returning . . .’’, when used except in the function-name posi-
tion of a call, is converted to ‘‘pointer to function returning . . .’’.

7.1.2 constant
A decimal, octal, character, or floating constant is a primary expression. Its type is int in the first three cases,

double in the last.

7.1.3 string
A string is a primary expression. Its type is originally ‘‘array of char’’; but following the same rule as in §7.1.1

for identifiers, this is modified to ‘‘pointer to char’’ and the result is a pointer to the first character in the string.

7.1.4 (expression)
A parenthesized expression is a primary expression whose type and value are identical to those of the unadorned

expression. The presence of parentheses does not affect whether the expression is an lvalue.

-

C Reference Manual - 5

7.1.5 primary-expression [expression]
A primary expression followed by an expression in square brackets is a primary expression. The intuitive mean-

ing is that of a subscript. Usually, the primary expression has type ‘‘pointer to . . .’’, the subscript expression is int,
and the type of the result is ‘‘ . . . ’’. The expression ‘‘E1[E2]’’ is identical (by definition) to ‘‘* ((E1) + (E2)) ’’.
All the clues needed to understand this notation are contained in this section together with the discussions in §§
7.1.1, 7.2.1, and 7.4.1 on identifiers, *, and + respectively; §14.3 below summarizes the implications.

7.1.6 primary-expression (expression-listopt)

A function call is a primary expression followed by parentheses containing a possibly empty, comma-separated
list of expressions which constitute the actual arguments to the function. The primary expression must be of type
‘‘function returning . . .’’, and the result of the function call is of type ‘‘ . . . ’’. As indicated below, a hitherto unseen
identifier followed immediately by a left parenthesis is contextually declared to represent a function returning an in-
teger; thus in the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type char are converted
to int.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument-passing in C is
strictly by value. A function may change the values of its formal parameters, but these changes cannot possibly af-
fect the values of the actual parameters. On the other hand, it is perfectly possible to pass a pointer on the under-
standing that the function may change the value of the object to which the pointer points.

Recursive calls to any function are permissible.

7.1.7 primary-lvalue . member-of-structure
An lvalue expression followed by a dot followed by the name of a member of a structure is a primary expression.

The object referred to by the lvalue is assumed to have the same form as the structure containing the structure mem-
ber. The result of the expression is an lvalue appropriately offset from the origin of the given lvalue whose type is
that of the named structure member. The given lvalue is not required to have any particular type.

Structures are discussed in §8.5.

7.1.8 primary-expression −> member-of-structure
The primary-expression is assumed to be a pointer which points to an object of the same form as the structure of

which the member-of-structure is a part. The result is an lvalue appropriately offset from the origin of the pointed-to
structure whose type is that of the named structure member. The type of the primary-expression need not in fact be
pointer; it is sufficient that it be a pointer, character, or integer.

Except for the relaxation of the requirement that E1 be of pointer type, the expression ‘‘E1−>MOS’’ is exactly
equivalent to ‘‘(*E1).MOS’’.

7.2 Unary operators
Expressions with unary operators group right-to-left.

7.2.1 * expression
The unary * operator means indirection: the expression must be a pointer, and the result is an lvalue referring to

the object to which the expression points. If the type of the expression is ‘‘pointer to . . .’’, the type of the result is
‘‘ . . . ’’.

7.2.2 & lvalue-expression
The result of the unary & operator is a pointer to the object referred to by the lvalue-expression. If the type of the

lvalue-expression is ‘‘ . . . ’’, the type of the result is ‘‘pointer to . . .’’.

7.2.3 − expression
The result is the negative of the expression, and has the same type. The type of the expression must be char,

int, float, or double.

-

C Reference Manual - 6

7.2.4 ! expression
The result of the logical negation operator ! is 1 if the value of the expression is 0, 0 if the value of the expres-

sion is non-zero. The type of the result is int. This operator is applicable only to ints or chars.

7.2.5 ~ expression
The ˜ operator yields the one’s complement of its operand. The type of the expression must be int or char, and

the result is int.

7.2.6 ++ lvalue-expression
The object referred to by the lvalue expression is incremented. The value is the new value of the lvalue expres-

sion and the type is the type of the lvalue. If the expression is int or char, it is incremented by 1; if it is a pointer
to an object, it is incremented by the length of the object. ++ is applicable only to these types. (Not, for example, to
float or double.)

7.2.7 −− lvalue-expression
The object referred to by the lvalue expression is decremented analogously to the ++ operator.

7.2.8 lvalue-expression ++
The result is the value of the object referred to by the lvalue expression. After the result is noted, the object re-

ferred to by the lvalue is incremented in the same manner as for the prefix ++ operator: by 1 for an int or char, by
the length of the pointed-to object for a pointer. The type of the result is the same as the type of the lvalue-
expression.

7.2.9 lvalue-expression −−
The result of the expression is the value of the object referred to by the the lvalue expression. After the result is

noted, the object referred to by the lvalue expression is decremented in a way analogous to the postfix ++ operator.

7.2.10 sizeof expression
The sizeof operator yields the size, in bytes, of its operand. When applied to an array, the result is the total

number of bytes in the array. The size is determined from the declarations of the objects in the expression. This ex-
pression is semantically an integer constant and may be used anywhere a constant is required. Its major use is in
communication with routines like storage allocators and I/O systems.

7.3 Multiplicative operators
The multiplicative operators *, /, and % group left-to-right.

7.3.1 expression * expression
The binary * operator indicates multiplication. If both operands are int or char, the result is int; if one is

int or char and one float or double, the former is converted to double, and the result is double; if both
are float or double, the result is double. No other combinations are allowed.

7.3.2 expression / expression
The binary / operator indicates division. The same type considerations as for multiplication apply.

7.3.3 expression % expression
The binary % operator yields the remainder from the division of the first expression by the second. Both operands

must be int or char, and the result is int. In the current implementation, the remainder has the same sign as the
dividend.

7.4 Additive operators
The additive operators + and − group left-to-right.

-

C Reference Manual - 7

7.4.1 expression + expression
The result is the sum of the expressions. If both operands are int or char, the result is int. If both are float

or double, the result is double. If one is char or int and one is float or double, the former is converted to
double and the result is double. If an int or char is added to a pointer, the former is converted by multiplying
it by the length of the object to which the pointer points and the result is a pointer of the same type as the original
pointer. Thus if P is a pointer to an object, the expression ‘‘P+1’’ is a pointer to another object of the same type as
the first and immediately following it in storage.

No other type combinations are allowed.

7.4.2 expression − expression
The result is the difference of the operands. If both operands are int, char, float, or double, the same type

considerations as for + apply. If an int or char is subtracted from a pointer, the former is converted in the same
way as explained under + above.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the length of the
object) to an int representing the number of objects separating the pointed-to objects. This conversion will in gen-
eral give unexpected results unless the pointers point to objects in the same array, since pointers, even to objects of
the same type, do not necessarily differ by a multiple of the object-length.

7.5 Shift operators
The shift operators << and >> group left-to-right.

7.5.1 expression << expression
7.5.2 expression >> expression

Both operands must be int or char, and the result is int. The second operand should be non-negative. The
value of ‘‘E1<<E2’’ is E1 (interpreted as a bit pattern 16 bits long) left-shifted E2 bits; vacated bits are 0-filled. The
value of ‘‘E1>>E2’’ is E1 (interpreted as a two’s complement, 16-bit quantity) arithmetically right-shifted E2 bit po-
sitions. Vacated bits are filled by a copy of the sign bit of E1. [Note: the use of arithmetic rather than logical shift
does not survive transportation between machines.]

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; ‘‘a<b<c’’ does not mean what it seems

to.

7.6.1 expression < expression
7.6.2 expression > expression
7.6.3 expression <= expression
7.6.4 expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or equal to) all yield 0
if the specified relation is false and 1 if it is true. Operand conversion is exactly the same as for the + operator ex-
cept that pointers of any kind may be compared; the result in this case depends on the relative locations in storage of
the pointed-to objects. It does not seem to be very meaningful to compare pointers with integers other than 0.

7.7 Equality operators
7.7.1 expression == expression
7.7.2 expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational operators except for
their lower precedence. (Thus ‘‘a<b == c<d’’ is 1 whenever a<b and c<d have the same truth-value).

7.8 expression & expression
The & operator groups left-to-right. Both operands must be int or char; the result is an int which is the bit-

wise logical and function of the operands.

-

C Reference Manual - 8

7.9 expression ^ expression
The ^ operator groups left-to-right. The operands must be int or char; the result is an int which is the bit-

wise exclusive or function of its operands.

7.10 expression | expression
The | operator groups left-to-right. The operands must be int or char; the result is an int which is the bit-wise

inclusive or of its operands.

7.11 expression && expression
The && operator returns 1 if both its operands are non-zero, 0 otherwise. Unlike &, && guarantees left-to-right

evaluation; moreover the second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.12 expression ||expression
The || operator returns 1 if either of its operands is non-zero, and 0 otherwise. Unlike | , || guarantees left-to-right

evaluation; moreover, the second operand is not evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.13 expression ? expression : expression
Conditional expressions group left-to-right. The first expression is evaluated and if it is non-zero, the result is the

value of the second expression, otherwise that of third expression. If the types of the second and third operand are
the same, the result has their common type; otherwise the same conversion rules as for + apply. Only one of the sec-
ond and third expressions is evaluated.

7.14 Assignment operators
There are a number of assignment operators, all of which group right-to-left. All require an lvalue as their left

operand, and the type of an assignment expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place.

7.14.1 lvalue = expression
The value of the expression replaces that of the object referred to by the lvalue. The operands need not have the

same type, but both must be int, char, float, double, or pointer. If neither operand is a pointer, the assign-
ment takes place as expected, possibly preceded by conversion of the expression on the right.

When both operands are int or pointers of any kind, no conversion ever takes place; the value of the expression
is simply stored into the object referred to by the lvalue. Thus it is possible to generate pointers which will cause ad-
dressing exceptions when used.

7.14.2 lvalue =+ expression
7.14.3 lvalue =− expression
7.14.4 lvalue =* expression
7.14.5 lvalue =/ expression
7.14.6 lvalue =% expression
7.14.7 lvalue =>> expression
7.14.8 lvalue =<< expression
7.14.9 lvalue =& expression
7.14.10 lvalue =^ expression
7.14.11 lvalue = | expression

The behavior of an expression of the form ‘‘E1 =op E2’’ may be inferred by taking it as equivalent to
‘‘E1 = E1 op E2’’; however, E1 is evaluated only once. Moreover, expressions like ‘‘i =+ p’’ in which a pointer is
added to an integer, are forbidden.

-

C Reference Manual - 9

7.15 expression , expression
A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is dis-

carded. The type and value of the result are the type and value of the right operand. This operator groups left-to-
right. It should be avoided in situations where comma is given a special meaning, for example in actual arguments
to function calls (§7.1.6) and lists of initializers (§10.2).

8. Declarations

Declarations are used within function definitions to specify the interpretation which C gives to each identifier;
they do not necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-listopt ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of at most
one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto, static, and register declarations also serve as definitions in that they cause an appropriate
amount of storage to be reserved. In the extern case there must be an external definition (see below) for the given
identifiers somewhere outside the function in which they are declared.

There are some severe restrictions on register identifiers: there can be at most 3 register identifiers in any
function, and the type of a register identifier can only be int, char, or pointer (not float, double, struc-
ture, function, or array). Also the address-of operator & cannot be applied to such identifiers. Except for these re-
strictions (in return for which one is rewarded with faster, smaller code), register identifiers behave as if they were
automatic. In fact implementations of C are free to treat register as synonymous with auto.

If the sc-specifier is missing from a declaration, it is generally taken to be auto.

8.2 Type specifiers
The type-specifiers are

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

The struct specifier is discussed in §8.5. If the type-specifier is missing from a declaration, it is generally taken
to be int.

-

C Reference Manual - 10

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.

declarator-list:
declarator
declarator , declarator-list

The specifiers in the declaration indicate the type and storage class of the objects to which the declarators refer.
Declarators have the syntax:

declarator:
identifier
* declarator
declarator ()
declarator [constant-expressionopt]
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the declarator appears in

an expression, it yields an object of the indicated type and storage class. Each declarator contains exactly one identi-
fier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier heading the decla-
ration.

If a declarator has the form

* D

for D a declarator, then the contained identifier has the type ‘‘pointer to . . .’’, where ‘‘ . . . ’’ is the type which the
identifier would have had if the declarator had been simply D.

If a declarator has the form

D ()

then the contained identifier has the type ‘‘function returning ...’’, where ‘‘ . . . ’’ is the type which the identifier
would have had if the declarator had been simply D.

A declarator may have the form

D[constant-expression]

or

D[]

In the first case the constant expression is an expression whose value is determinable at compile time, and whose
type is int. in the second the constant 1 is used. (Constant expressions are defined precisely in §15.) Such a
declarator makes the contained identifier have type ‘‘array.’’ If the unadorned declarator D would specify a non-
array of type ‘‘. . .’’, then the declarator ‘‘D[i]’’ yields a 1-dimensional array with rank i of objects of type ‘‘. . .’’. If
the unadorned declarator D would specify an n -dimensional array with rank i1 × i2 × . . . × in, then the declarator
‘‘D[in+1]’’ yields an (n +1) -dimensional array with rank i1 × i2 × . . . × in × in+1.

An array may be constructed from one of the basic types, from a pointer, from a structure, or from another array
(to generate a multi-dimensional array).

Finally, parentheses in declarators do not alter the type of the contained identifier except insofar as they alter the
binding of the components of the declarator.

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as follows: func-
tions may not return arrays, structures or functions, although they may return pointers to such things; there are no ar-
rays of functions, although there may be arrays of pointers to functions. Likewise a structure may not contain a
function, but it may contain a pointer to a function.

-

C Reference Manual - 11

As an example, the declaration

int i, *ip, f(), *fip(), (*pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip returning a pointer to
an integer, and a pointer pfi to a function which returns an integer. Also

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail, x3d is an array of three
items: each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any of the expres-
sions ‘‘x3d’’, ‘‘x3d[i]’’, ‘‘x3d[i][j]’’, ‘‘x3d[i][j][k]’’ may reasonably appear in an expression. The first three
have type ‘‘array’’, the last has type int.

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct { type-decl-list }

The type-decl-list is a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A type declaration is just a declaration which does not mention a storage class (the storage class ‘‘member of struc-
ture’’ here being understood by context).

type-declaration:
type-specifier declarator-list ;

Within the structure, the objects declared have addresses which increase as their declarations are read left-to-right.
Each component of a structure begins on an addressing boundary appropriate to its type. On the PDP-11 the only re-
quirement is that non-characters begin on a word boundary; therefore, there may be 1-byte, unnamed holes in a
structure, and all structures have an even length in bytes.

Another form of structure specifier is

struct identifier { type-decl-list }

This form is the same as the one just discussed, except that the identifier is remembered as the structure tag of the
structure specified by the list. A subsequent declaration may then be given using the structure tag but without the
list, as in the third form of structure specifier:

struct identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the declaration to be
given once and used several times. It is however absurd to declare a structure which contains an instance of itself, as
distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully, is

struct tnode {
char tword[20];
int count;
struct tnode *left;
struct tnode *right;

};

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this declaration has

-

C Reference Manual - 12

been given, the following declaration makes sense:

struct tnode s, *sp;

which declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort.

The names of structure members and structure tags may be the same as ordinary variables, since a distinction can
be made by context. However, names of tags and members must be distinct. The same member name can appear in
different structures only if the two members are of the same type and if their origin with respect to their structure is
the same; thus separate structures can share a common initial segment.

9. Statements

Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list }

statement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the second case
the second substatement is executed if the expression is 0. As usual the ‘‘else’’ ambiguity is resolved by connecting
an else with the last encountered elseless if.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The test takes
place before each execution of the statement.

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes place after
each execution of the statement.

-

C Reference Manual - 13

9.6 For statement
The for statement has the form

for (expression-1opt ; expression-2opt ; expression-3opt) statement

This statement is equivalent to

expression-1;
while (expression-2) {

statement
expression-3;

}

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each iteration,
such that the loop is exited when the expression becomes 0; the third expression typically specifies an incrementa-
tion which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while clause equiva-
lent to ‘‘while(1)’’; other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on the value of an

expression. It has the form

switch (expression) statement

The expression must be int or char. The statement is typically compound. Each statement within the statement
may be labelled with case prefixes as follows:

case constant-expression :

where the constant expression must be int or char. No two of the case constants in a switch may have the same
value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and compared with each case constant in an un-
defined order. If one of the case constants is equal to the value of the expression, control is passed to the statement
following the matched case prefix. If no case constant matches the expression, and if there is a default prefix,
control passes to the prefixed statement. In the absence of a default prefix none of the statements in the switch is
executed.

Case or default prefixes in themselves do not alter the flow of control.

9.8 Break statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the state-
ment following the terminated statement.

9.9 Continue statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for statement; that
is to the end of the loop. More precisely, in each of the statements

-

C Reference Manual - 14

while (...) { do { for (...) {
...

contin:; contin:; contin:;
} } while (...); }

a continue is equivalent to ‘‘goto contin’’.

9.10 Return statement
A function returns to its caller by means of the return statement, which has one of the forms

return ;
return (expression) ;

In the first case no value is returned. In the second case, the value of the expression is returned to the caller of the
function. If required, the expression is converted, as if by assignment, to the type of the function in which it appears.
Flowing off the end of a function is equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto expression ;

The expression should be a label (§§9.12, 14.4) or an expression of type ‘‘pointer to int’’ which evaluates to a la-
bel. It is illegal to transfer to a label not located in the current function unless some extra-language provision has
been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. More details on the semantics of labels are given in §14.4 below.

9.13 Null statement
The null statement has the form

;

A null statement is useful to carry a label just before the ‘‘}’’ of a compound statement or to supply a null body to a
looping statement such as while.

10. External definitions

A C program consists of a sequence of external definitions. External definitions may be given for functions, for
simple variables, and for arrays. They are used both to declare and to reserve storage for objects. An external defi-
nition declares an identifier to have storage class extern and a specified type. The type-specifier (§8.2) may be
empty, in which case the type is taken to be int.

10.1 External function definitions
Function definitions have the form

function-definition:
type-specifieropt function-declarator function-body

A function declarator is similar to a declarator for a ‘‘function returning ...’’ except that it lists the formal parameters
of the function being defined.

function-declarator:
declarator (parameter-listopt)

parameter-list:

-

C Reference Manual - 15

identifier
identifier , parameter-list

The function-body has the form

function-body:
type-decl-list function-statement

The purpose of the type-decl-list is to give the types of the formal parameters. No other identifiers should be de-
clared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which may have declarations at the start.

function-statement:
{ declaration-listopt statement-list }

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;
{

int m;
m = (a>b)? a:b;
return(m>c? m:c);

}

Here ‘‘int’’ is the type-specifier; ‘‘max(a, b, c)’’ is the function-declarator; ‘‘int a, b, c;’’ is the type-decl-list for the
formal parameters; ‘‘{ . . . }’’ is the function-statement.

C converts all float actual parameters to double, so formal parameters declared float have their declara-
tion adjusted to read double. Also, since a reference to an array in any context (in particular as an actual parame-
ter) is taken to mean a pointer to the first element of the array, declarations of formal parameters declared ‘‘array of
...’’ are adjusted to read ‘‘pointer to ...’’. Finally, because neither structures nor functions can be passed to a func-
tion, it is useless to declare a formal parameter to be a structure or function (pointers to structures or functions are of
course permitted).

A free return statement is supplied at the end of each function definition, so running off the end causes control,
but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

data-definition:
externopt type-specifieropt init-declarator-listopt ;

The optional extern specifier is discussed in § 11.2. If given, the init-declarator-list is a comma-separated list of
declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializeropt

Each initializer represents the initial value for the corresponding object being defined (and declared).

initializer:
constant
{ constant-expression-list }

-

C Reference Manual - 16

constant-expression-list:
constant-expression
constant-expression , constant-expression-list

Thus an initializer consists of a constant-valued expression, or comma-separated list of expressions, inside braces.
The braces may be dropped when the expression is just a plain constant. The exact meaning of a constant expression
is discussed in §15. The expression list is used to initialize arrays; see below.

The type of the identifier being defined should be compatible with the type of the initializer: a double constant
may initialize a float or double identifier; a non-floating-point expression may initialize an int, char, or
pointer.

An initializer for an array may contain a comma-separated list of compile-time expressions. The length of the ar-
ray is taken to be the maximum of the number of expressions in the list and the square-bracketed constant in the
array’s declarator. This constant may be missing, in which case 1 is used. The expressions initialize successive
members of the array starting at the origin (subscript 0) of the array. The acceptable expressions for an array of type
‘‘array of ...’’ are the same as those for type ‘‘...’’. As a special case, a single string may be given as the initializer
for an array of chars; in this case, the characters in the string are taken as the initializing values.

Structures can be initialized, but this operation is incompletely implemented and machine-dependent. Basically
the structure is regarded as a sequence of words and the initializers are placed into those words. Structure initializa-
tion, using a comma-separated list in braces, is safe if all the members of the structure are integers or pointers but is
otherwise ill-advised.

The initial value of any externally-defined object not explicitly initialized is guaranteed to be 0.

11. Scope rules

A complete C program need not all be compiled at the same time: the source text of the program may be kept in
several files, and precompiled routines may be loaded from libraries. Communication among the functions of a pro-
gram may be carried out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an identifier,
which is essentially the region of a program during which it may be used without drawing ‘‘undefined identifier’’ di-
agnostics; and second, the scope associated with external identifiers, which is characterized by the rule that refer-
ences to the same external identifier are references to the same object.

11.1 Lexical scope
C is not a block-structured language; this may fairly be considered a defect. The lexical scope of names declared

in external definitions extends from their definition through the end of the file in which they appear. The lexical
scope of names declared at the head of functions (either as formal parameters or in the declarations heading the state-
ments constituting the function itself) is the body of the function.

It is an error to redeclare identifiers already declared in the current context, unless the new declaration specifies
the same type and storage class as already possessed by the identifiers.

11.2 Scope of externals
If a function declares an identifier to be extern, then somewhere among the files or libraries constituting the

complete program there must be an external definition for the identifier. All functions in a given program which re-
fer to the same external identifier refer to the same object, so care must be taken that the type and extent specified in
the definition are compatible with those specified by each function which references the data.

In PDP-11 C, it is explicitly permitted for (compatible) external definitions of the same identifier to be present in
several of the separately-compiled pieces of a complete program, or even twice within the same program file, with
the important limitation that the identifier may be initialized in at most one of the definitions. In other operating sys-
tems, however, the compiler must know in just which file the storage for the identifier is allocated, and in which file
the identifier is merely being referred to. In the implementations of C for such systems, the appearance of the ex-
tern keyword before an external definition indicates that storage for the identifiers being declared will be allocated
in another file. Thus in a multi-file program, an external data definition without the extern specifier must appear
in exactly one of the files. Any other files which wish to give an external definition for the identifier must include
the extern in the definition. The identifier can be initialized only in the file where storage is allocated.

In PDP-11 C none of this nonsense is necessary and the extern specifier is ignored in external definitions.

-

C Reference Manual - 17

12. Compiler control lines

When a line of a C program begins with the character #, it is interpreted not by the compiler itself, but by a pre-
processor which is capable of replacing instances of given identifiers with arbitrary token-strings and of inserting
named files into the source program. In order to cause this preprocessor to be invoked, it is necessary that the very
first line of the program begin with #. Since null lines are ignored by the preprocessor, this line need contain no oth-
er information.

12.1 Token replacement
A compiler-control line of the form

define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with the given
string of tokens (except within compiler control lines). The replacement token-string has comments removed from
it, and it is surrounded with blanks. No rescanning of the replacement string is attempted. This facility is most valu-
able for definition of ‘‘manifest constants’’, as in

define tabsize 100
...
int table[tabsize];

12.2 File inclusion
Large C programs often contain many external data definitions. Since the lexical scope of external definitions ex-

tends to the end of the program file, it is good practice to put all the external definitions for data at the start of the
program file, so that the functions defined within the file need not repeat tedious and error-prone declarations for
each external identifier they use. It is also useful to put a heavily used structure definition at the start and use its
structure tag to declare the auto pointers to the structure used within functions. To further exploit this technique
when a large C program consists of several files, a compiler control line of the form

include "filename"

results in the replacement of that line by the entire contents of the file filename.

13. Implicit declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration. Sometimes
the storage class is supplied by the context: in external definitions, and in declarations of formal parameters and
structure members. In a declaration inside a function, if a storage class but no type is given, the identifier is assumed
to be int; if a type but no storage class is indicated, the identifier is assumed to be auto. An exception to the latter
rule is made for functions, since auto functions are meaningless (C being incapable of compiling code into the
stack). If the type of an identifier is ‘‘function returning ...’’, it is implicitly declared to be extern.

In an expression, an identifier followed by (and not currently declared is contextually declared to be ‘‘function
returning int’’.

Undefined identifiers not followed by (are assumed to be labels which will be defined later in the function.
(Since a label is not an lvalue, this accounts for the ‘‘Lvalue required’’ error message sometimes noticed when an
undeclared identifier is used.) Naturally, appearance of an identifier as a label declares it as such.

For some purposes it is best to consider formal parameters as belonging to their own storage class. In practice, C
treats parameters as if they were automatic (except that, as mentioned above, formal parameter arrays and floats
are treated specially).

14. Types revisited

This section summarizes the operations which can be performed on objects of certain types.

-

C Reference Manual - 18

14.1 Structures
There are only two things that can be done with a structure: pick out one of its members (by means of the . or

−> operators); or take its address (by unary &). Other operations, such as assigning from or to it or passing it as a
parameter, draw an error message. In the future, it is expected that these operations, but not necessarily others, will
be allowed.

14.2 Functions
There are only two things that can be done with a function: call it, or take its address. If the name of a function

appears in an expression not in the function-name position of a call, a pointer to the function is generated. Thus, to
pass one function to another, one might say

int f();
...
g(f);

Then the definition of g might read

g(funcp)
int (*funcp)();
{

...
(*funcp)();
...

}

Notice that f was declared explicitly in the calling routine since its first appearance was not followed by (.

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to the first member of

the array. Because of this conversion, arrays are not lvalues. By definition, the subscript operator [] is interpreted
in such a way that ‘‘E1[E2]’’ is identical to ‘‘*((E1) + (E2))’’. Because of the conversion rules which apply to +, if
E1 is an array and E2 an integer, then E1[E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n -dimensional array of rank
i × j × . . . ×k, then E appearing in an expression is converted to a pointer to an (n−1)-dimensional array with rank
j × . . . ×k. If the * operator, either explicitly or implicitly as a result of subscripting, is applied to this pointer, the re-
sult is the pointed-to (n−1)-dimensional array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5];

Here x is a 3×5 array of integers. When x appears in an expression, it is converted to a pointer to (the first of three)
5-membered arrays of integers. In the expression ‘‘x[i]’’, which is equivalent to ‘‘*(x+i)’’, x is first converted to a
pointer as described; then i is converted to the type of x, which involves multiplying i by the length the object to
which the pointer points, namely 5 integer objects. The results are added and indirection applied to yield an array
(of 5 integers) which in turn is converted to a pointer to the first of the integers. If there is another subscript the
same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the first subscript
in the declaration helps determine the amount of storage consumed by an array but plays no other part in subscript
calculations.

14.4 Labels
Labels do not have a type of their own; they are treated as having type ‘‘array ofint’’. Label variables should be

declared ‘‘pointer to int’’; before execution of a goto referring to the variable, a label (or an expression deriving
from a label) should be assigned to the variable.

Label variables are a bad idea in general; the switch statement makes them almost always unnecessary.

-

C Reference Manual - 19

15. Constant expressions

In several places C requires expressions which evaluate to a constant: after case, as array bounds, and in ini-
tializers. In the first two cases, the expression can involve only integer constants, character constants, and sizeof
expressions, possibly connected by the binary operators

+ − * / % & | ˆ << >>

or by the unary operators

− ˜
Parentheses can be used for grouping, but not for function calls.

A bit more latitude is permitted for initializers; besides constant expressions as discussed above, one can also ap-
ply the unary & operator to external scalars, and to external arrays subscripted with a constant expression. The unary
& can also be applied implicitly by appearance of unsubscripted external arrays. The rule here is that initializers
must evaluate either to a constant or to the address of an external identifier plus or minus a constant.

16. Examples.

These examples are intended to illustrate some typical C constructions as well as a serviceable style of writing C
programs.

16.1 Inner product
This function returns the inner product of its array arguments.

double inner(v1, v2, n)
double v1[], v2[];
{

double sum;
int i;
sum = 0.0;
for (i=0; i<n; i++)

sum =+ v1[i] * v2[i];
return(sum);

}

The following version is somewhat more efficient, but perhaps a little less clear. It uses the facts that parameter ar-
rays are really pointers, and that all parameters are passed by value.

double inner(v1, v2, n)
double *v1, *v2;
{

double sum;
sum = 0.0;
while(n−−)

sum =+ *v1++ * *v2++;
return(sum);

}

The declarations for the parameters are really exactly the same as in the last example. In the first case array declara-
tions ‘‘ [] ’’ were given to emphasize that the parameters would be referred to as arrays; in the second, pointer dec-
larations were given because the indirection operator and ++ were used.

16.2 Tree and character processing
Here is a complete C program (courtesy of R. Haight) which reads a document and produces an alphabetized list

of words found therein together with the number of occurrences of each word. The method keeps a binary tree of
words such that the left descendant tree for each word has all the words lexicographically smaller than the given
word, and the right descendant has all the larger words. Both the insertion and the printing routine are recursive.

The program calls the library routines getchar to pick up characters and exit to terminate execution. Printf is

-

C Reference Manual - 20

called to print the results according to a format string. A version of printf is given below (§16.3) .

Because all the external definitions for data are given at the top, no extern declarations are necessary within the
functions. To stay within the rules, a type declaration is given for each non-integer function when the function is
used before it is defined. However, since all such functions return pointers which are simply assigned to other point-
ers, no actual harm would result from leaving out the declarations; the supposedly int function values would be as-
signed without error or complaint.

define nwords 100 /* number of different words */
define wsize 20 /* max chars per word */
struct tnode { /* the basic structure */

char tword[wsize];
int count;
struct tnode *left;
struct tnode *right;

};

struct tnode space[nwords]; /* the words themselves */
int nnodes nwords; /* number of remaining slots */
struct tnode *spacep space; /* next available slot */
struct tnode *freep; /* free list */
/*

* The main routine reads words until end-of-file (´\0´ returned from "getchar")

* "tree" is called to sort each word into the tree.

*/
main()
{

struct tnode *top, *tree();
char c, word[wsize];
int i;

i = top = 0;
while (c=getchar())

if (´a´<=c && c<=´z´ || ´A´<=c && c <=´Z´) {
if (i<wsize−1)

word[i++] = c;
} else

if (i) {
word[i++] = ´\0´;
top = tree(top, word);
i = 0;

}
tprint(top);

}
/*

* The central routine. If the subtree pointer is null, allocate a new node for it.

* If the new word and the node´s word are the same, increase the node´s count.

* Otherwise, recursively sort the word into the left or right subtree according

* as the argument word is less or greater than the node´s word.

*/
struct tnode *tree(p, word)
struct tnode *p;
char word[];
{

struct tnode *alloc();
int cond;

/* Is pointer null? */
if (p==0) {

p = alloc();

-

C Reference Manual - 21

copy(word, p−>tword);
p−>count = 1;
p−>right = p−>left = 0;
return(p);

}
/* Is word repeated? */
if ((cond=compar(p−>tword, word)) == 0) {

p−>count++;
return(p);

}
/* Sort into left or right */
if (cond<0)

p−>left = tree(p−>left, word);
else

p−>right = tree(p−>right, word);
return(p);

}
/*

* Print the tree by printing the left subtree, the given node, and the right subtree

*/
tprint(p)
struct tnode *p;
{

while (p) {
tprint(p−>left);
printf("%d: %s\n", p−>count, p−>tword);
p = p−>right;

}
}
/*

* String comparison: return number (>, =, <) 0

* according as s1 (>, =, <) s2.

*/
compar(s1, s2)
char *s1, *s2;
{

int c1, c2;

while((c1 = *s1++) == (c2 = *s2++))
if (c1==´\0´)

return(0);
return(c2−c1);

}
/*

* String copy: copy s1 into s2 until the null

* character appears.

*/
copy(s1, s2)
char *s1, *s2;
{

while(*s2++ = *s1++);
}
/*

* Node allocation: return pointer to a free node.

* Bomb out when all are gone. Just for fun, there

* is a mechanism for using nodes that have been

* freed, even though no one here calls "free."

*/
struct tnode *alloc()

-

C Reference Manual - 22

{
struct tnode *t;

if (freep) {
t = freep;
freep = freep−>left;
return(t);

}
if (−−nnodes < 0) {

printf("Out of space\n");
exit();

}
return(spacep++);

}
/*

* The uncalled routine which puts a node on the free list.

*/
free(p)
struct tnode *p;
{

p−>left = freep;
freep = p;

}

To illustrate a slightly different technique of handling the same problem, we will repeat fragments of this example
with the tree nodes treated explicitly as members of an array. The fundamental change is to deal with the subscript
of the array member under discussion, instead of a pointer to it. The struct declaration becomes

struct tnode {
char tword[wsize];
int count;
int left;
int right;

};

and alloc becomes

alloc()
{

int t;

t = −−nnodes;
if (t<=0) {

printf("Out of space\n");
exit();

}
return(t);

}

The free stuff has disappeared because if we deal with exclusively with subscripts some sort of map has to be kept,
which is too much trouble.

Now the tree routine returns a subscript also, and it becomes:

tree(p, word)
char word[];
{

int cond;

if (p==0) {
p = alloc();
copy(word, space[p].tword);

-

C Reference Manual - 23

space[p].count = 1;
space[p].right = space[p].left = 0;
return(p);

}
if ((cond=compar(space[p].tword, word)) == 0) {

space[p].count++;
return(p);

}
if (cond<0)

space[p].left = tree(space[p].left, word);
else

space[p].right = tree(space[p].right, word);
return(p);

}

The other routines are changed similarly. It must be pointed out that this version is noticeably less efficient than the
first because of the multiplications which must be done to compute an offset in space corresponding to the sub-
scripts.

The observation that subscripts (like ‘‘a [i] ’’) are less efficient than pointer indirection (like ‘‘*ap’’) holds true
independently of whether or not structures are involved. There are of course many situations where subscripts are
indispensable, and others where the loss in efficiency is worth a gain in clarity.

16.3 Formatted output
Here is a simplified version of the printf routine, which is available in the C library. It accepts a string (character

array) as first argument, and prints subsequent arguments according to specifications contained in this format string.
Most characters in the string are simply copied to the output; two-character sequences beginning with ‘‘%’’ specify
that the next argument should be printed in a style as follows:

%d decimal number
%o octal number
%c ASCII character, or 2 characters if upper character is not null
%s string (null-terminated array of characters)
%f floating-point number

The actual parameters for each function call are laid out contiguously in increasing storage locations; therefore, a
function with a variable number of arguments may take the address of (say) its first argument, and access the re-
maining arguments by use of subscripting (regarding the arguments as an array) or by indirection combined with
pointer incrementation.

If in such a situation the arguments have mixed types, or if in general one wishes to insist that an lvalue should be
treated as having a given type, then struct declarations like those illustrated below will be useful. It should be
evident, though, that such techniques are implementation dependent.

Printf depends as well on the fact that char and float arguments are widened respectively to int and dou-
ble, so there are effectively only two sizes of arguments to deal with. Printf calls the library routines putchar to
write out single characters and ftoa to dispose of floating-point numbers.

printf(fmt, args)
char fmt[];
{

char *s;
struct { char **charpp; };
struct { double *doublep; };
int *ap, x, c;

ap = &args; /* argument pointer */
for (; ;) {

while((c = *fmt++) != ´%´) {
if(c == ´\0´)

return;

-

C Reference Manual - 24

putchar(c);
}
switch (c = *fmt++) {
/* decimal */
case ´d´:

x = *ap++;
if(x < 0) {

x = −x;
if(x<0) { /* is − infinity */

printf("−32768");
continue;

}
putchar(´−´);

}
printd(x);
continue;

/* octal */
case ´o´:

printo(*ap++);
continue;

/* float, double */
case ´f´:

/* let ftoa do the real work */
ftoa(*ap.doublep++);
continue;

/* character */
case ´c´:

putchar(*ap++);
continue;

/* string */
case ´s´:

s = *ap.charpp++;
while(c = *s++)

putchar(c);
continue;

}
putchar(c);

}
}
/*

* Print n in decimal; n must be non-negative

*/
printd(n)
{

int a;
if (a=n/10)

printd(a);
putchar(n%10 + ´0´);

}
/*

* Print n in octal, with exactly 1 leading 0

*/
printo(n)
{

if (n)
printo((n>>3)&017777);

putchar((n&07)+´0´);
}

-

C Reference Manual - 25

REFERENCES

1. Johnson, S. C., and Kernighan, B. W. ‘‘The Programming Language B.’’ Comp. Sci. Tech. Rep. #8., Bell Lab-
oratories, 1972.

2. Ritchie, D. M., and Thompson, K. L. ‘‘The UNIX Time-sharing System.’’ C. ACM 7, 17, July, 1974, pp.
365-375.

3. Peterson, T. G., and Lesk, M. E. ‘‘A User’s Guide to the C Language on the IBM 370.’’ Internal Memoran-
dum, Bell Laboratories, 1974.

4. Thompson, K. L., and Ritchie, D. M. UNIX Programmer’s Manual. Bell Laboratories, 1973.

5. Lesk, M. E., and Barres, B. A. ‘‘The GCOS C Library.’’ Internal memorandum, Bell Laboratories, 1974.

6. Kernighan, B. W. ‘‘Programming in C− A Tutorial.’’ Unpublished internal memorandum, Bell Laboratories,
1974.

-

C Reference Manual - 26

APPENDIX 1

Syntax Summary

1. Expressions.

expression:
primary
* expression
& expression
− expression
! expression

˜ expression
++ lvalue
−− lvalue
lvalue ++
lvalue −−
sizeof expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-listopt)
primary [expression]
lvalue . identifier
primary > identifier

lvalue:
identifier
primary [expression]
lvalue . identifier
primary > identifier
* expression
(lvalue)

The primary-expression operators

() [] . >

have highest priority and group left-to-right. The unary operators

& − ! ~ ++ −− sizeof

have priority below the primary operators but higher than any binary operator, and group right-to-left. Bi-
nary operators and the conditional operator all group left-to-right, and have priority decreasing as indicated:

binop:
* / %
+ −
>> <<
< > <= >=
== !=
&

-

C Reference Manual - 27

^
|
&&
||
? :

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
= =+ =− =* =/ =% =>> =<< =& =^ =|

The comma operator has the lowest priority, and groups left-to-right.

2. Declarations.

declaration:
decl-specifiers declarator-listopt ;

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

sc-specifier:
auto
static
extern
register

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

declarator-list:
declarator
declarator , declarator-list

declarator:
identifier
* declarator
declarator ()
declarator [constant-expressionopt]
(declarator)

type-decl-list:
type-declaration
type-declaration type-decl-list

type-declaration:
type-specifier declarator-list ;

3. Statements.

statement:
expression ;
{ statement-list }

-

C Reference Manual - 28

if (expression) statement
if (expression) statement else statement
while (expression) statement
for (expressionopt ; expressionopt ; expressionopt) statement
switch (expression) statement
case constant-expression : statement
default : statement
break ;
continue ;
return ;
return (expression) ;
goto expression ;
identifier : statement
;

statement-list:
statement
statement statement-list

4. External definitions.

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifieropt function-declarator function-body

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier , parameter-list

function-body:
type-decl-list function-statement

function-statement:
{ declaration-listopt statement-list }

data-definition:
externopt type-specifieropt init-declarator-listopt ;

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializeropt

initializer:
constant
{ constant-expression-list }

-

C Reference Manual - 29

constant-expression-list:
constant-expression
constant-expression , constant-expression-list

constant-expression:
expression

5. Preprocessor

define identifier token-string

include "filename"

-

C Reference Manual - 30

APPENDIX 2
Implementation Peculiarities

This Appendix briefly summarizes the differences between the implementations of C on the PDP-11 under UNIX and
on the HIS 6070 under GCOS; it includes some known bugs in each implementation. Each entry is keyed by an indi-
cator as follows:

h hard to fix
g GCOS version should probably be changed
u UNIX version should probably be changed
d Inherent difference likely to remain

This list was prepared by M. E. Lesk, S. C. Johnson, E. N. Pinson, and the author.

A. Bugs or differences from C language specifications

hg A.1) GCOS does not do type conversions in ‘‘?:’’.
hg A.2) GCOS has a bug in int and real comparisons; the numbers are compared by subtraction, and

the difference must not overflow.
g A.3) When x is a float, the construction ‘‘test ? −x : x’’ is illegal on GCOS.
hg A.4) ‘‘p1−>p2 =+ 2’’ causes a compiler error, where p1 and p2 are pointers.
u A.5) On UNIX, the expression in a return statement is not converted to the type of the function, as

promised.
hug A.6) entry statement is not implemented at all.

B. Implementation differences

d B.1) Sizes of character constants differ; UNIX: 2, GCOS: 4.
d B.2) Table sizes in compilers differ.
d B.3) chars and ints have different sizes; chars are 8 bits on UNIX, 9 on GCOS; words are 16 bits

on UNIX and 36 on GCOS. There are corresponding differences in representations of floats
and doubles.

d B.4) Character arrays stored left to right in a word in GCOS, right to left in UNIX.
g B.5) Passing of floats and doubles differs; UNIX passes on stack, GCOS passes pointer (hidden to nor-

mal user).
g B.6) Structures and strings are aligned on a word boundary in UNIX, not aligned in GCOS.
g B.7) GCOS preprocessor supports #rename, #escape; UNIX has only #define, #include.
u B.8) Preprocessor is not invoked on UNIX unless first character of file is ‘‘#’’.
u B.9) The external definition ‘‘static int . . .’’ is legal on GCOS, but gets a diagnostic on UNIX. (On

GCOS it means an identifier global to the routines in the file but invisible to routines compiled
separately.)

g B.10) A compound statement on GCOS must contain one ‘‘;’’ but on UNIX may be empty.
g B.11) On GCOS case distinctions in identifiers and keywords are ignored; on UNIX case is significant

everywhere, with keywords in lower case.

C. Syntax Differences

g C.1) UNIX allows broader classes of initialization; on GCOS an initializer must be a constant, name,
or string. Similarly, GCOS is much stickier about wanting braces around initializers and in par-
ticular they must be present for array initialization.

g C.2) ‘‘int extern’’ illegal on GCOS; must have ‘‘extern int’’ (storage class before type).
g C.3) Externals on GCOS must have a type (not defaulted to int).
u C.4) GCOS allows initialization of internal static (same syntax as for external definitions).
g C.5) integer−>... is not allowed on GCOS.
g C.6) Some operators on pointers are illegal on GCOS (<, >).

-

C Reference Manual - 31

g C.7) register storage class means something on UNIX, but is not accepted on GCOS.
g C.8) Scope holes: ‘‘int x; f () {int x;}’’ is illegal on UNIX but defines two variables on GCOS.
g C.9) When function names are used as arguments on UNIX, either ‘‘fname’’ or ‘‘&fname’’ may be

used to get a pointer to the function; on GCOS ‘‘&fname’’ generates a doubly-indirect pointer.
(Note that both are wrong since the ‘‘&’’ is supposed to be supplied for free.)

D. Operating System Dependencies

d D.1) GCOS allocates external scalars by SYMREF; UNIX allocates external scalars as labelled com-
mon; as a result there may be many uninitialized external definitions of the same variable on
UNIX but only one on GCOS.

d D.2) External names differ in allowable length and character set; on UNIX, 7 characters and both
cases; on GCOS 6 characters and only one case.

E. Semantic Differences

hg E.1) ‘‘int i, *p; p=i; i=p;’’ does nothing on UNIX, does something on GCOS (destroys right half of i) .
d E.2) ‘‘>>’’ means arithmetic shift on UNIX, logical on GCOS.
d E.3) When a char is converted to integer, the result is always positive on GCOS but can be negative

on UNIX.
d E.4) Arguments of subroutines are evaluated left-to-right on GCOS, right-to-left on UNIX.

