(ne02) Electric Charges and Forces


Models

  1. Particle (Energy + Mass Movement)
  2. Wave (Energy Transfer)
  3. Field (NEW way of thinking: Faraday!)

From Forces to Fields:

$$ F_g(r) = K_g \, { \color{fuchsia}{m} M \over r^2} \, [N] \, = \color{fuchsia}{m} \, { K_g M \over r^2} \,$$ → Fg(r=6351km) = m g
(g is the strength of the gravitational field on earth's surface [N/kg] (r=6371km))
Similarily... $$ F_e(r) = {1 \over {4 \pi \epsilon_o}} \, { \color{fuchsia} {q} Q \over r^2} \,\, [N] \,\,\,\, Coulomb's \, Law $$ $$ F_e(r) = {{1 \over {4 \pi \epsilon_o}} \, { \color{fuchsia} {q} Q \over r^2} \, = \, \color{fuchsia} {q} \, {1 \over {4 \pi \epsilon_o}} {Q \over r^2 } \, = \, \color{fuchsia} {q} \, E(r) \,\, } $$ Thus Fe(r) = q E(r) and E(r) has units [N/C]
$$ E(r) = {1 \over {4 \pi \epsilon_o}} \, { Q \over r^2} \,\, [N/C] $$

PBL Highlights (30 min)

History Knight-v4 ch 22.1 → 22.3

Video: Professor Julius Sumner Miller on Electrostatic Phenomena

Coulombs Law (Knight ch2.4)

Concept of Electric Field (Knight ch2.4)


  /   教學   /   物理   baixiaoming AT gmail.com