(ne03) The Electric Field 電場


PreAmble: Newton (1643 - 1727) & Faraday (1791 - 1867)

Key Points: Electric (Gravitational) Fields

Point Charges & Symmetry

For Macroscopic objects we need to (Σ) or ∫ over all q (electric) or m (gravity). Generally this is done numerically. But there are a few simple cases...
4 Simple Cases
$$ \mathbf E_{point} $$$$ \mathbf E_{line,\infty} $$ $$ \mathbf E_{plane,\infty} \, $$$$ \mathbf E_{sphere} $$
point line plane
$$ q \, [C] $$ $$ \lambda \, [C m^{-1}] $$$$ \eta \, [C m^{-2} ] $$ $$ Q \, [C] \, $$
$$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia} {q \over r^2} \, { \mathbf r \over r } $$ $$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia}{2 \lambda \over r} \, { \mathbf r \over r } $$ $$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia}{2 \pi\eta } \, { \mathbf z \over z } $$ $$ = \mathbf E_{point} $$

Dipoles

dipole $$ \mathbf p = |q| \, \mathbf {s} \, $$
$$ \mathbf E_{dipole,axis} $$ $$ \mathbf E_{dipole,plane} $$
$$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia} {2 \mathbf p \over r^3} $$ $$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia} { \mathbf p \over r^3} $$

(Observable) Acceleration: Linear & Angular

$$ \mathbf a = { q \over m_e} \mathbf E + { m_g \over m_e} \mathbf G $$ $$ \mathbf \alpha = {{\mathbf \tau} \over {I}} = {{\mathbf p \times \mathbf E} \over I} $$

Powerpoint & Kahoot

1 Review by Kahoot

2 Electric Dipole: intro then ppt23-31 to 42

3 Continous Charge Distributions - Line of Charge 43-54

4 Continue Charge Distributions - Rings/Disks/Planes/Spheres 55-63

5 Parallel Plate Capacitor 64-73

6,7 Motion in Electric Fields 74-100

Charged particle
Dipole (no charge, ΣFe=0 but the field does something....)

Charges and Fields
Charges & Fields
(Mono - Dipole)

  /   教學   /   物理   baixiaoming AT gmail.com