For Macroscopic objects we need to (Σ) or ∫ over all q (electric) or m (gravity). Generally this is done numerically. But there are a few simple cases...
4 Simple Cases | |||
---|---|---|---|
$$ \mathbf E_{point} $$ | $$ \mathbf E_{line,\infty} $$ | $$ \mathbf E_{plane,\infty} \, $$ | $$ \mathbf E_{sphere} $$ |
$$ q \, [C] $$ | $$ \lambda \, [C m^{-1}] $$ | $$ \eta \, [C m^{-2} ] $$ | $$ Q \, [C] \, $$ |
$$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia} {q \over r^2} \, { \mathbf r \over r } $$ | $$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia}{2 \lambda \over r} \, { \mathbf r \over r } $$ | $$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia}{2 \pi\eta } \, { \mathbf z \over z } $$ | $$ = \mathbf E_{point} $$ |
$$ \mathbf p = |q| \, \mathbf {s} \, $$ | ||
---|---|---|
$$ \mathbf E_{dipole,axis} $$ | $$ \mathbf E_{dipole,plane} $$ | |
$$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia} {2 \mathbf p \over r^3} $$ | $$ = {1 \over {4 \pi \epsilon_o}} \, \color{fuchsia} { \mathbf p \over r^3} $$ |
$$ \mathbf a = { q \over m_e} \mathbf E + { m_g \over m_e} \mathbf G $$ | $$ \mathbf \alpha = {{\mathbf \tau} \over {I}} = {{\mathbf p \times \mathbf E} \over I} $$ |