Current Density
| $$ { \vec J = \, n \, e \, \vec v_d \, = \, n \, e \, \left( { {e \tau} \over m} \vec E \right) \equiv \sigma \vec E \equiv {1 \over \rho} \vec E \, \,\, [Am^{-2}] }$$
|
Ohm's Law
|
---|
$$ I \equiv \iint \vec J \cdot d \vec A
= {1 \over \rho} \iint \vec E \cdot d \vec A
= {1 \over \rho} \iint \nabla V \cdot d \vec A \, \\
\rightarrow I = {A \over {\rho L}} \Delta V \equiv {{\Delta V} \over R}
$$
|
Assumptions
| 1. ρ independent of space (x,y,x) & E-field (i.e. drift velocity is linearly depends on electric field. (i.e. τ is a constant))
|
2. E-field is a linear function of space
|
Kirchoff's Laws
|
---|
1: Energy Conservation | $$ \Delta V_{closed \, loop} = \sum \Delta V_i = 0 \, $$
|
2: Charge Conservation | $$ \sum I_{in} - \sum I_{out} = 0 $$
|