(ne10) 電流和電阻 Current & Resistance


Review: Capacitors ΔV = Q/C (finding equivalent capacitor: Q, ΔV don't change)

Ceq = SUM Ci 1/Ceq = SUM 1/Ci

Key Points

Current Density $$ { \vec J = \, n \, e \, \vec v_d \, = \, n \, e \, \left( { {e \tau} \over m} \vec E \right) \equiv \sigma \vec E \equiv {1 \over \rho} \vec E \, \,\, [Am^{-2}] }$$

Ohm's Law
$$ I \equiv \iint \vec J \cdot d \vec A = {1 \over \rho} \iint \vec E \cdot d \vec A = {1 \over \rho} \iint \nabla V \cdot d \vec A \, \\ \rightarrow I = {A \over {\rho L}} \Delta V \equiv {{\Delta V} \over R} $$
Assumptions 1. ρ independent of space (x,y,x) & E-field (i.e. drift velocity is linearly depends on electric field. (i.e. τ is a constant))
2. E-field is a linear function of space

Kirchoff's Laws
1: Energy Conservation$$ \Delta V_{closed \, loop} = \sum \Delta V_i = 0 \, $$
2: Charge Conservation$$ \sum I_{in} - \sum I_{out} = 0 $$

PBL Comments

Lecture Reference: Knight Vs 3 Chapter 30 or Knight Version 4 Chapter 28



  /   教學   /   物理   baixiaoming AT gmail.com