Galilean | Lorentz (next course)
|
---|
valid only if $$ \mathbf{ \vec{ \beta}} = \mathbf{ \vec{ v}} / c << 1 $$
| No conditions $$ \gamma = { (1 - \beta^2)}^ {-1/2} $$
|
$$ \mathbf{ \vec{ E}}_B \approx \mathbf{ \vec{ E}}_A \, + \, \mathbf{ \vec{ v}}_{BA} \times \mathbf{ \vec{ B}}_A $$
| $$ \mathbf{ \vec{ E}}_B = \gamma ( \mathbf{ \vec{ E}}_A \, + \, \mathbf{ \vec{ \beta}} \times \mathbf{ \vec{ B}}_A ) \, - \,
{\gamma^2 \over { \gamma + 1}} \vec {\beta} \, ( \vec {\beta} \cdot \mathbf{ \vec{ E}}_A ) $$
|
$$ \mathbf{ \vec{ B}}_B \approx \mathbf{ \vec{ B}}_A \, - \, \mathbf{ \vec{ v}}_{BA}/c^2 \times \mathbf{ \vec{ E}}_A $$
| $$ \mathbf{ \vec{ B}}_B = \gamma ( \mathbf{ \vec{ B}}_A \, - \, \mathbf{ \vec{ \beta}} \times \mathbf{ \vec{ E}}_A ) \, - \,
{\gamma^2 \over { \gamma + 1}} \vec {\beta} \, ( \vec {\beta} \cdot \mathbf{ \vec{ B}}_A )$$
|
Note that: | $$ c = { (\mu_o \epsilon_o) }^{-1/2} $$
|
Integral Form
|
---|
$$ \bigcirc \!\!\!\!\!\!\!\!\!\iint_S \mathbf {\vec E} \, \cdot d \mathbf {\vec A} = \Phi_e = {Q \over \epsilon} $$
| $$ \bigcirc \!\!\!\!\!\!\!\!\!\iint_S \mathbf {\vec B} \, \cdot d \mathbf {\vec A} = \Phi_m = 0 $$
|
$$ \oint_C \mathbf {\vec B} \, \cdot \, d \, \mathbf {\vec s} = {\mu_o I}
+ \color{fuchsia} { \epsilon_o \mu_o {{d \Phi_e} \over {dt}} }
$$
| $$ \oint_C {\mathbf {\vec E}}(t) \, \cdot \, d \, \mathbf {\vec s} = - { {d \Phi_m} \over {dt}} = - {d \over dt} \bigcirc \!\!\!\!\!\!\!\!\!\iint_S { \mathbf {\vec B}}(t) \, \cdot d \mathbf {\vec A}(t)$$
|
$$ \mathbf a = { \sum \mathbf F \over m_e} = {1 \over m_e} \left ( m_g \mathbf {\vec G}
+ q \mathbf {\vec E}
+ q \mathbf {\vec v} \times \mathbf {\vec B} \right )
$$